Timezone: »

 
Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods (Spotlight #4)
Eyke Hüllermeier

Sat Jul 24 09:42 AM -- 09:51 AM (PDT) @ None

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.

Author Information

Eyke Hüllermeier (Paderborn University)

More from the Same Authors

  • 2020 Poster: Preselection Bandits »
    Viktor Bengs · Eyke Hüllermeier
  • 2019 : Poster Session 1 (all papers) »
    Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · wenwu zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel
  • 2018 Poster: Ranking Distributions based on Noisy Sorting »
    Adil El Mesaoudi-Paul · Eyke Hüllermeier · Robert Busa-Fekete
  • 2018 Oral: Ranking Distributions based on Noisy Sorting »
    Adil El Mesaoudi-Paul · Eyke Hüllermeier · Robert Busa-Fekete
  • 2017 Poster: Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening »
    Mohsen Ahmadi Fahandar · Eyke Hüllermeier · Ines Couso
  • 2017 Talk: Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening »
    Mohsen Ahmadi Fahandar · Eyke Hüllermeier · Ines Couso