Timezone: »

MISNN: Multiple Imputation via Semi-parametric Neural Networks
Qi Long · Yiliang Zhang · Zongyu Dai · Zhiqi Bu
Multiple imputation (MI) has been widely applied to missing value problems in biomedical, social and econometric research, in order to avoid improper inference in the downstream data analysis. In the presence of high-dimensional data, imputation models that include feature selection, especially $\ell_1$ regularized regression (such as Lasso, adaptive Lasso and Elastic Net), are common choices to prevent the model from underdetermination. However, conducting MI with feature selection is difficult: existing methods are often computationally inefficient and poor in performance. We propose MISNN, a novel and efficient algorithm that incorporates feature selection for MI. Leveraging the approximation power of neural networks, MISNN is a general and flexible framework, compatible to any feature selection method, any neural network architecture, high/low-dimensional data and general missing patterns. Through empirical experiments, MISNN has demonstrated great advantages over state-of-the-art imputation methods (e.g. Bayesian Lasso and matrix completion), in terms of imputation accuracy, statistical consistency and computation speed.

Author Information

Qi Long (University of Pennsylvania)
Yiliang Zhang (University of Pennsylvania)
Zongyu Dai (University of Pennsylvania)
Zhiqi Bu (University of Pennsylvania)

More from the Same Authors