Timezone: »
In active learning, new labels are commonly acquired in batches. However, common acquisition functions are only meant for one-sample acquisition rounds, and when their scores are used naively for batch acquisition, they result in batches lacking diversity, which negatively impacts performance. State-of-the-art batch acquisition functions are very costly to compute on the other hand. In this paper, we present a novel class of stochastic acquisition functions that extend one-sample acquisition functions to the batch setting by observing that the computed acquisition scores are only really valid for the first sample that is selected in every batch acquisition round and that there is an increasing error in the scores for future samples in the batch. We model this error in the scores for additional batch samples. We acquire new samples by sampling from the pool set using the adapted scores. Our acquisition functions are both vastly cheaper to compute and out-perform other batch acquisition functions.
Author Information
Andreas Kirsch (University of Oxford)
Sebastian Farquhar (University of Oxford)
Yarin Gal (University of Oxford)
More from the Same Authors
-
2021 : A Practical Notation for Information-Theoretic Quantities between Outcomes and Random Variables »
Andreas Kirsch · Yarin Gal -
2021 : GoldiProx Selection: Faster training by learning what is learnable, not yet learned, and worth learning »
Sören Mindermann · Muhammed Razzak · Adrien Morisot · Aidan Gomez · Sebastian Farquhar · Jan Brauner · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2021 : On Low Rank Training of Deep Neural Networks »
Siddhartha Kamalakara · Acyr Locatelli · Bharat Venkitesh · Jimmy Ba · Yarin Gal · Aidan Gomez -
2021 : Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2021 : A Simple Baseline for Batch Active Learning with Stochastic Acquisition Functions »
Andreas Kirsch · Sebastian Farquhar · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 Poster: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Poster: Continual Learning via Sequential Function-Space Variational Inference »
Tim G. J Rudner · Freddie Bickford Smith · QIXUAN FENG · Yee-Whye Teh · Yarin Gal -
2022 Poster: Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt »
Sören Mindermann · Jan Brauner · Muhammed Razzak · Mrinank Sharma · Andreas Kirsch · Winnie Xu · Benedikt Höltgen · Aidan Gomez · Adrien Morisot · Sebastian Farquhar · Yarin Gal -
2022 Spotlight: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Spotlight: Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt »
Sören Mindermann · Jan Brauner · Muhammed Razzak · Mrinank Sharma · Andreas Kirsch · Winnie Xu · Benedikt Höltgen · Aidan Gomez · Adrien Morisot · Sebastian Farquhar · Yarin Gal -
2022 Spotlight: Continual Learning via Sequential Function-Space Variational Inference »
Tim G. J Rudner · Freddie Bickford Smith · QIXUAN FENG · Yee-Whye Teh · Yarin Gal -
2022 Poster: Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval »
Pascal Notin · Mafalda Dias · Jonathan Frazer · Javier Marchena Hurtado · Aidan Gomez · Debora Marks · Yarin Gal -
2022 Spotlight: Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval »
Pascal Notin · Mafalda Dias · Jonathan Frazer · Javier Marchena Hurtado · Aidan Gomez · Debora Marks · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Yarin Gal · Tom Rainforth · Andreas Kirsch -
2021 : Poster »
Shiji Zhou · Nastaran Okati · Wichinpong Sinchaisri · Kim de Bie · Ana Lucic · Mina Khan · Ishaan Shah · JINGHUI LU · Andreas Kirsch · Julius Frost · Ze Gong · Gokul Swamy · Ah Young Kim · Ahmed Baruwa · Ranganath Krishnan -
2021 : Invited Talk #1 »
Yarin Gal -
2021 : Live Panel Discussion »
Thomas Dietterich · Chelsea Finn · Kamalika Chaudhuri · Yarin Gal · Uri Shalit -
2021 Poster: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Poster: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Spotlight: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Spotlight: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Poster: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Andrew Jesson · Sören Mindermann · Yarin Gal · Uri Shalit -
2021 Spotlight: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Andrew Jesson · Sören Mindermann · Yarin Gal · Uri Shalit -
2021 Poster: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2021 Oral: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2020 Poster: Inter-domain Deep Gaussian Processes »
Tim G. J. Rudner · Dino Sejdinovic · Yarin Gal -
2020 Poster: Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts? »
Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal -
2020 Poster: Invariant Causal Prediction for Block MDPs »
Amy Zhang · Clare Lyle · Shagun Sodhani · Angelos Filos · Marta Kwiatkowska · Joelle Pineau · Yarin Gal · Doina Precup -
2020 Poster: Uncertainty Estimation Using a Single Deep Deterministic Neural Network »
Joost van Amersfoort · Lewis Smith · Yee-Whye Teh · Yarin Gal -
2018 Poster: Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam »
Mohammad Emtiyaz Khan · Didrik Nielsen · Voot Tangkaratt · Wu Lin · Yarin Gal · Akash Srivastava -
2018 Oral: Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam »
Mohammad Emtiyaz Khan · Didrik Nielsen · Voot Tangkaratt · Wu Lin · Yarin Gal · Akash Srivastava