Timezone: »
Bayesian Active Learning has focused on BALD, which reduces model parameter uncertainty. However, we show that BALD gets stuck on out-of-distribution or junk data that is not relevant for the task. We examine a novel Expected Predictive Information Gain (EPIG) to deal with distribution shifts of the pool set. EPIG reduces the uncertainty of predictions on an unlabelled evaluation set sampled from the test data distribution whose distribution might be different to the pool set distribution. Based on this, our new EPIG-BALD acquisition function for Bayesian Neural Networks selects samples to improve the performance on the test data distribution instead of selecting samples that reduce model uncertainty everywhere, including for out-of-distribution regions with low density in the test data distribution. Our method outperforms state-of-the-art Bayesian active learning methods on high-dimensional datasets and avoids out-of-distribution junk data in cases where current state-of-the-art methods fail.
Author Information
Yarin Gal (University of Oxford)
Tom Rainforth (University of Oxford)
Andreas Kirsch (University of Oxford)
More from the Same Authors
-
2021 : A Practical Notation for Information-Theoretic Quantities between Outcomes and Random Variables »
Andreas Kirsch · Yarin Gal -
2021 : GoldiProx Selection: Faster training by learning what is learnable, not yet learned, and worth learning »
Sören Mindermann · Muhammed Razzak · Adrien Morisot · Aidan Gomez · Sebastian Farquhar · Jan Brauner · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2021 : Batch Active Learning with Stochastic Acquisition Functions »
Andreas Kirsch · Sebastian Farquhar · Yarin Gal -
2021 : On Low Rank Training of Deep Neural Networks »
Siddhartha Kamalakara · Acyr Locatelli · Bharat Venkitesh · Jimmy Ba · Yarin Gal · Aidan Gomez -
2021 : Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2021 : A Simple Baseline for Batch Active Learning with Stochastic Acquisition Functions »
Andreas Kirsch · Sebastian Farquhar · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2023 Poster: DiscoBAX - Discovery of optimal intervention sets in genomic experiment design »
Clare Lyle · Arash Mehrjou · Pascal Notin · Andrew Jesson · Stefan Bauer · Yarin Gal · Patrick Schwab -
2023 Poster: Differentiable Multi-Target Causal Bayesian Experimental Design »
Panagiotis Tigas · Yashas Annadani · Desi Ivanova · Andrew Jesson · Yarin Gal · Adam Foster · Stefan Bauer -
2023 Poster: Learning Instance-Specific Augmentations by Capturing Local Invariances »
Ning Miao · Tom Rainforth · Emile Mathieu · Yann Dubois · Yee-Whye Teh · Adam Foster · Hyunjik Kim -
2023 Poster: CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design »
Desi Ivanova · Joel Jennings · Tom Rainforth · Cheng Zhang · Adam Foster -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 Poster: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Poster: Continual Learning via Sequential Function-Space Variational Inference »
Tim G. J Rudner · Freddie Bickford Smith · QIXUAN FENG · Yee-Whye Teh · Yarin Gal -
2022 Poster: Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt »
Sören Mindermann · Jan Brauner · Muhammed Razzak · Mrinank Sharma · Andreas Kirsch · Winnie Xu · Benedikt Höltgen · Aidan Gomez · Adrien Morisot · Sebastian Farquhar · Yarin Gal -
2022 Spotlight: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Spotlight: Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt »
Sören Mindermann · Jan Brauner · Muhammed Razzak · Mrinank Sharma · Andreas Kirsch · Winnie Xu · Benedikt Höltgen · Aidan Gomez · Adrien Morisot · Sebastian Farquhar · Yarin Gal -
2022 Spotlight: Continual Learning via Sequential Function-Space Variational Inference »
Tim G. J Rudner · Freddie Bickford Smith · QIXUAN FENG · Yee-Whye Teh · Yarin Gal -
2022 Poster: Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval »
Pascal Notin · Mafalda Dias · Jonathan Frazer · Javier Marchena Hurtado · Aidan Gomez · Debora Marks · Yarin Gal -
2022 Spotlight: Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval »
Pascal Notin · Mafalda Dias · Jonathan Frazer · Javier Marchena Hurtado · Aidan Gomez · Debora Marks · Yarin Gal -
2021 : Poster »
Shiji Zhou · Nastaran Okati · Wichinpong Sinchaisri · Kim de Bie · Ana Lucic · Mina Khan · Ishaan Shah · JINGHUI LU · Andreas Kirsch · Julius Frost · Ze Gong · Gokul Swamy · Ah Young Kim · Ahmed Baruwa · Ranganath Krishnan -
2021 : Invited Talk #1 »
Yarin Gal -
2021 : Live Panel Discussion »
Thomas Dietterich · Chelsea Finn · Kamalika Chaudhuri · Yarin Gal · Uri Shalit -
2021 Poster: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Poster: Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design »
Adam Foster · Desi Ivanova · ILYAS MALIK · Tom Rainforth -
2021 Poster: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Spotlight: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Oral: Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design »
Adam Foster · Desi Ivanova · ILYAS MALIK · Tom Rainforth -
2021 Spotlight: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Poster: Probabilistic Programs with Stochastic Conditioning »
David Tolpin · Yuan Zhou · Tom Rainforth · Hongseok Yang -
2021 Poster: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Andrew Jesson · Sören Mindermann · Yarin Gal · Uri Shalit -
2021 Spotlight: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Andrew Jesson · Sören Mindermann · Yarin Gal · Uri Shalit -
2021 Spotlight: Probabilistic Programs with Stochastic Conditioning »
David Tolpin · Yuan Zhou · Tom Rainforth · Hongseok Yang -
2021 Poster: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2021 Oral: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2020 : "Designing Bayesian-Optimal Experiments with Stochastic Gradients" »
Tom Rainforth -
2020 Poster: Inter-domain Deep Gaussian Processes »
Tim G. J. Rudner · Dino Sejdinovic · Yarin Gal -
2020 Poster: Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support »
Yuan Zhou · Hongseok Yang · Yee-Whye Teh · Tom Rainforth -
2020 Poster: Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts? »
Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal -
2020 Poster: Invariant Causal Prediction for Block MDPs »
Amy Zhang · Clare Lyle · Shagun Sodhani · Angelos Filos · Marta Kwiatkowska · Joelle Pineau · Yarin Gal · Doina Precup -
2020 Poster: Uncertainty Estimation Using a Single Deep Deterministic Neural Network »
Joost van Amersfoort · Lewis Smith · Yee-Whye Teh · Yarin Gal -
2019 Poster: Disentangling Disentanglement in Variational Autoencoders »
Emile Mathieu · Tom Rainforth · N Siddharth · Yee-Whye Teh -
2019 Oral: Disentangling Disentanglement in Variational Autoencoders »
Emile Mathieu · Tom Rainforth · N Siddharth · Yee-Whye Teh -
2019 Poster: Amortized Monte Carlo Integration »
Adam Golinski · Frank Wood · Tom Rainforth -
2019 Oral: Amortized Monte Carlo Integration »
Adam Golinski · Frank Wood · Tom Rainforth -
2018 Poster: On Nesting Monte Carlo Estimators »
Tom Rainforth · Rob Cornish · Hongseok Yang · andrew warrington · Frank Wood -
2018 Oral: On Nesting Monte Carlo Estimators »
Tom Rainforth · Rob Cornish · Hongseok Yang · andrew warrington · Frank Wood -
2018 Poster: Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam »
Mohammad Emtiyaz Khan · Didrik Nielsen · Voot Tangkaratt · Wu Lin · Yarin Gal · Akash Srivastava -
2018 Oral: Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam »
Mohammad Emtiyaz Khan · Didrik Nielsen · Voot Tangkaratt · Wu Lin · Yarin Gal · Akash Srivastava -
2018 Poster: Tighter Variational Bounds are Not Necessarily Better »
Tom Rainforth · Adam Kosiorek · Tuan Anh Le · Chris Maddison · Maximilian Igl · Frank Wood · Yee-Whye Teh -
2018 Oral: Tighter Variational Bounds are Not Necessarily Better »
Tom Rainforth · Adam Kosiorek · Tuan Anh Le · Chris Maddison · Maximilian Igl · Frank Wood · Yee-Whye Teh