Timezone: »
RL + Recommender Systems Panel
Alekh Agarwal · Ed Chi · Maria Dimakopoulou · Georgios Theocharous · Minmin Chen · Lihong Li
Panelists: Alekh Agarwal (Microsoft), Ed Chi (Google), Maria Dimakopoulo (Netflix), Georgios Theocharous (Adobe)
Co-Chairs/Moderators: Minmin Chen (Google) and Lihong Li (Amazon)
Author Information
Alekh Agarwal (Microsoft Research)
Ed Chi (Google)
Maria Dimakopoulou (Netflix)
Georgios Theocharous (Adobe Research)
Minmin Chen (Google research)
Lihong Li (Amazon)
More from the Same Authors
-
2021 : Reward Shaping for User Satisfaction in a REINFORCE Recommender »
Konstantina Christakopoulou · Can Xu · Sai Zhang · Sriraj Badam · Daniel Li · Hao Wan · Xinyang Yi · Ya Le · Chris Berg · Eric Bencomo Dixon · Ed Chi · Minmin Chen -
2023 Poster: Large Language Models Can Be Easily Distracted by Irrelevant Context »
Haoyue Shi · Xinyun Chen · Kanishka Misra · Nathan Scales · David Dohan · Ed Chi · Nathanael Schärli · Denny Zhou -
2022 Poster: HyperPrompt: Prompt-based Task-Conditioning of Transformers »
Yun He · Steven Zheng · Yi Tay · Jai Gupta · Yu Du · Vamsi Aribandi · Zhe Zhao · Yaguang Li · Zhao Chen · Don Metzler · Heng-Tze Cheng · Ed Chi -
2022 Spotlight: HyperPrompt: Prompt-based Task-Conditioning of Transformers »
Yun He · Steven Zheng · Yi Tay · Jai Gupta · Yu Du · Vamsi Aribandi · Zhe Zhao · Yaguang Li · Zhao Chen · Don Metzler · Heng-Tze Cheng · Ed Chi -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor -
2021 Poster: Near-Optimal Representation Learning for Linear Bandits and Linear RL »
Jiachen Hu · Xiaoyu Chen · Chi Jin · Lihong Li · Liwei Wang -
2021 Spotlight: Near-Optimal Representation Learning for Linear Bandits and Linear RL »
Jiachen Hu · Xiaoyu Chen · Chi Jin · Lihong Li · Liwei Wang -
2021 Poster: High Confidence Generalization for Reinforcement Learning »
James Kostas · Yash Chandak · Scott Jordan · Georgios Theocharous · Philip Thomas -
2021 Spotlight: High Confidence Generalization for Reinforcement Learning »
James Kostas · Yash Chandak · Scott Jordan · Georgios Theocharous · Philip Thomas -
2021 Poster: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Batch Stationary Distribution Estimation »
Junfeng Wen · Bo Dai · Lihong Li · Dale Schuurmans -
2020 Poster: Neural Contextual Bandits with UCB-based Exploration »
Dongruo Zhou · Lihong Li · Quanquan Gu -
2020 Poster: Optimizing for the Future in Non-Stationary MDPs »
Yash Chandak · Georgios Theocharous · Shiv Shankar · Martha White · Sridhar Mahadevan · Philip Thomas -
2020 : Netflix: Slate Bandit Learning & Evaluation »
Maria Dimakopoulou -
2019 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Alborz Geramifard · Lihong Li · Csaba Szepesvari · Tao Wang -
2019 Poster: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Poster: Fair Regression: Quantitative Definitions and Reduction-Based Algorithms »
Alekh Agarwal · Miroslav Dudik · Steven Wu -
2019 Oral: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Oral: Fair Regression: Quantitative Definitions and Reduction-Based Algorithms »
Alekh Agarwal · Miroslav Dudik · Steven Wu -
2019 Poster: Policy Certificates: Towards Accountable Reinforcement Learning »
Christoph Dann · Lihong Li · Wei Wei · Emma Brunskill -
2019 Poster: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Poster: Learning Action Representations for Reinforcement Learning »
Yash Chandak · Georgios Theocharous · James Kostas · Scott Jordan · Philip Thomas -
2019 Oral: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Oral: Policy Certificates: Towards Accountable Reinforcement Learning »
Christoph Dann · Lihong Li · Wei Wei · Emma Brunskill -
2019 Oral: Learning Action Representations for Reinforcement Learning »
Yash Chandak · Georgios Theocharous · James Kostas · Scott Jordan · Philip Thomas -
2018 Poster: Hierarchical Imitation and Reinforcement Learning »
Hoang Le · Nan Jiang · Alekh Agarwal · Miroslav Dudik · Yisong Yue · Hal Daumé III -
2018 Poster: A Reductions Approach to Fair Classification »
Alekh Agarwal · Alina Beygelzimer · Miroslav Dudik · John Langford · Hanna Wallach -
2018 Oral: Hierarchical Imitation and Reinforcement Learning »
Hoang Le · Nan Jiang · Alekh Agarwal · Miroslav Dudik · Yisong Yue · Hal Daumé III -
2018 Oral: A Reductions Approach to Fair Classification »
Alekh Agarwal · Alina Beygelzimer · Miroslav Dudik · John Langford · Hanna Wallach -
2018 Poster: Scalable Bilinear Pi Learning Using State and Action Features »
Yichen Chen · Lihong Li · Mengdi Wang -
2018 Poster: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Poster: Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks »
Minmin Chen · Jeffrey Pennington · Samuel Schoenholz -
2018 Poster: Practical Contextual Bandits with Regression Oracles »
Dylan Foster · Alekh Agarwal · Miroslav Dudik · Haipeng Luo · Robert Schapire -
2018 Oral: Practical Contextual Bandits with Regression Oracles »
Dylan Foster · Alekh Agarwal · Miroslav Dudik · Haipeng Luo · Robert Schapire -
2018 Oral: Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks »
Minmin Chen · Jeffrey Pennington · Samuel Schoenholz -
2018 Oral: Scalable Bilinear Pi Learning Using State and Action Features »
Yichen Chen · Lihong Li · Mengdi Wang -
2018 Oral: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2017 : Corralling a Band of Bandit Algorithms »
Alekh Agarwal -
2017 Poster: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Optimal and Adaptive Off-policy Evaluation in Contextual Bandits »
Yu-Xiang Wang · Alekh Agarwal · Miroslav Dudik -
2017 Poster: Stochastic Variance Reduction Methods for Policy Evaluation »
Simon Du · Jianshu Chen · Lihong Li · Lin Xiao · Dengyong Zhou -
2017 Talk: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Talk: Optimal and Adaptive Off-policy Evaluation in Contextual Bandits »
Yu-Xiang Wang · Alekh Agarwal · Miroslav Dudik -
2017 Talk: Stochastic Variance Reduction Methods for Policy Evaluation »
Simon Du · Jianshu Chen · Lihong Li · Lin Xiao · Dengyong Zhou -
2017 Poster: Provably Optimal Algorithms for Generalized Linear Contextual Bandits »
Lihong Li · Yu Lu · Dengyong Zhou -
2017 Poster: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Provably Optimal Algorithms for Generalized Linear Contextual Bandits »
Lihong Li · Yu Lu · Dengyong Zhou -
2017 Tutorial: Real World Interactive Learning »
Alekh Agarwal · John Langford