Timezone: »

 
Machine Learning for Chip Design
Roberto Bondesan

Fri Jul 23 04:40 AM -- 05:30 AM (PDT) @

The automated design of chips is facing growing challenges due to a high volume of smartphones, the increasing functionality, and the corresponding heterogeneity of the chips. In this talk, I will survey how machine learning has recently emerged as a core technique that promises to rescue the reducing gains in power performance and area in this field. In particular, I will focus on the challenges in deploying learning algorithms in electronic design automation and outline the solution that we take at Qualcomm which combines machine learning with combinatorial optimization solvers.

Speaker: Roberto Bondesan, Qualcomm https://scholar.google.com/citations?user=l2z7p3oAAAAJ&hl=en

Author Information

Roberto Bondesan (Qualcomm AI Research)

More from the Same Authors

  • 2021 : Invited Speakers' Panel »
    Neeraja J Yadwadkar · Shalmali Joshi · Roberto Bondesan · Engineer Bainomugisha · Stephen Roberts
  • 2019 : Poster discussion »
    Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari