Timezone: »
In recent years new methods have emerged in control and reinforcement learning that incorporate techniques from regret minimization and online convex optimization. The resulting theory give rise to provable guarantees for some longstanding questions in control and reinforcement learning: logarithmic regret and fast rates, end-to-end LQG-LQR without system knowledge, Kalman filtering with adversarial noise, black-box control with provable finite-time guarantees, tight lower bounds for system identification, and more.
The main innovation in these results stems from an online control model which replaces stochastic perturbations by adversarial ones, and the goal of optimal control with regret minimization. We will describe the setting, as well as novel methods that are gradient-based and rely on novel convex relaxations.
Mon 12:00 p.m. - 1:15 p.m.
|
Online and non-stochastic control
(
Talk 1
)
SlidesLive Video » |
Elad Hazan 🔗 |
Mon 1:15 p.m. - 1:45 p.m.
|
Online and non-stochastic control
|
🔗 |
Mon 1:45 p.m. - 3:00 p.m.
|
Online and non-stochastic control
(
Talk 2
)
SlidesLive Video » |
Karan Singh 🔗 |
Author Information
Elad Hazan (Princeton University and Google Brain)
Karan Singh (Microsoft Research)
More from the Same Authors
-
2021 : Robust online control with model misspecification »
Xinyi Chen · Udaya Ghai · Elad Hazan · Alexandre Megretsky -
2021 : A Boosting Approach to Reinforcement Learning »
Nataly Brukhim · Elad Hazan · Karan Singh -
2022 : Non-convex online learning via algorithmic equivalence »
Udaya Ghai · Zhou Lu · Elad Hazan -
2022 Poster: A Regret Minimization Approach to Multi-Agent Control »
Udaya Ghai · Udari Madhuhshani · Naomi Leonard · Elad Hazan -
2022 Spotlight: A Regret Minimization Approach to Multi-Agent Control »
Udaya Ghai · Udari Madhuhshani · Naomi Leonard · Elad Hazan -
2021 Poster: Boosting for Online Convex Optimization »
Elad Hazan · Karan Singh -
2021 Spotlight: Boosting for Online Convex Optimization »
Elad Hazan · Karan Singh -
2021 Poster: A Regret Minimization Approach to Iterative Learning Control »
Naman Agarwal · Elad Hazan · Anirudha Majumdar · Karan Singh -
2021 Spotlight: A Regret Minimization Approach to Iterative Learning Control »
Naman Agarwal · Elad Hazan · Anirudha Majumdar · Karan Singh -
2021 : Online and non-stochastic control »
Karan Singh -
2021 : Online and non-stochastic control »
Elad Hazan -
2020 Poster: Boosting for Control of Dynamical Systems »
Naman Agarwal · Nataly Brukhim · Elad Hazan · Zhou Lu -
2019 Poster: Efficient Full-Matrix Adaptive Regularization »
Naman Agarwal · Brian Bullins · Xinyi Chen · Elad Hazan · Karan Singh · Cyril Zhang · Yi Zhang -
2019 Poster: Online Control with Adversarial Disturbances »
Naman Agarwal · Brian Bullins · Elad Hazan · Sham Kakade · Karan Singh -
2019 Oral: Efficient Full-Matrix Adaptive Regularization »
Naman Agarwal · Brian Bullins · Xinyi Chen · Elad Hazan · Karan Singh · Cyril Zhang · Yi Zhang -
2019 Oral: Online Control with Adversarial Disturbances »
Naman Agarwal · Brian Bullins · Elad Hazan · Sham Kakade · Karan Singh -
2019 Poster: Provably Efficient Maximum Entropy Exploration »
Elad Hazan · Sham Kakade · Karan Singh · Abby Van Soest -
2019 Oral: Provably Efficient Maximum Entropy Exploration »
Elad Hazan · Sham Kakade · Karan Singh · Abby Van Soest -
2018 Poster: On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization »
Sanjeev Arora · Nadav Cohen · Elad Hazan -
2018 Oral: On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization »
Sanjeev Arora · Nadav Cohen · Elad Hazan -
2017 Poster: Efficient Regret Minimization in Non-Convex Games »
Elad Hazan · Karan Singh · Cyril Zhang -
2017 Talk: Efficient Regret Minimization in Non-Convex Games »
Elad Hazan · Karan Singh · Cyril Zhang