Timezone: »

 
Poster
Data-efficient Hindsight Off-policy Option Learning
Markus Wulfmeier · Dushyant Rao · Roland Hafner · Thomas Lampe · Abbas Abdolmaleki · Tim Hertweck · Michael Neunert · Dhruva Tirumala Bukkapatnam · Noah Siegel · Nicolas Heess · Martin Riedmiller

Wed Jul 21 09:00 AM -- 11:00 AM (PDT) @ None #None

We introduce Hindsight Off-policy Options (HO2), a data-efficient option learning algorithm. Given any trajectory, HO2 infers likely option choices and backpropagates through the dynamic programming inference procedure to robustly train all policy components off-policy and end-to-end. The approach outperforms existing option learning methods on common benchmarks. To better understand the option framework and disentangle benefits from both temporal and action abstraction, we evaluate ablations with flat policies and mixture policies with comparable optimization. The results highlight the importance of both types of abstraction as well as off-policy training and trust-region constraints, particularly in challenging, simulated 3D robot manipulation tasks from raw pixel inputs. Finally, we intuitively adapt the inference step to investigate the effect of increased temporal abstraction on training with pre-trained options and from scratch.

Author Information

Markus Wulfmeier (DeepMind)
Dushyant Rao (DeepMind)
Roland Hafner (DeepMind)
Thomas Lampe (DeepMind)
Abbas Abdolmaleki (DeepMind)
Tim Hertweck (DeepMind)
Michael Neunert (Google DeepMind)
Dhruva Tirumala Bukkapatnam (DeepMind)
Noah Siegel (DeepMind)
Nicolas Heess (DeepMind)
Martin Riedmiller (DeepMind)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors