Timezone: »
Least squares estimators, when trained on few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator experts that are robust with regard to moment conditions. When these moment conditions are specified using Kullback-Leibler or Wasserstein-type divergences, we can find the robust estimators efficiently using convex optimization. We use the Bernstein online aggregation algorithm on the proposed family of robust experts to generate predictions for the sequential stream of target test samples. Numerical experiments on real data show that the robust strategies systematically outperform non-robust interpolations of the empirical least squares estimators.
Author Information
Bahar Taskesen (EPFL)
Man-Chung Yue (Hong Kong Polytechnic University)
Jose Blanchet (Stanford University)
Daniel Kuhn (EPFL)
Viet Anh Nguyen (Stanford University / VinAI Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts »
Wed. Jul 21st 02:00 -- 02:20 AM Room None
More from the Same Authors
-
2022 Poster: Distributionally Robust $Q$-Learning »
Zijian Liu · Zhengqing Zhou · Perry Dong · Jerry Bai · Jose Blanchet · Wei Xu · Zhengyuan Zhou -
2022 Spotlight: Distributionally Robust $Q$-Learning »
Zijian Liu · Zhengqing Zhou · Perry Dong · Jerry Bai · Jose Blanchet · Wei Xu · Zhengyuan Zhou -
2021 Poster: Testing Group Fairness via Optimal Transport Projections »
Nian Si · Karthyek Murthy · Jose Blanchet · Viet Anh Nguyen -
2021 Spotlight: Testing Group Fairness via Optimal Transport Projections »
Nian Si · Karthyek Murthy · Jose Blanchet · Viet Anh Nguyen -
2021 Poster: Principal Component Hierarchy for Sparse Quadratic Programs »
Robbie Vreugdenhil · Viet Anh Nguyen · Armin Eftekhari · Peyman Mohajerin Esfahani -
2021 Poster: Distributionally Robust Optimization with Markovian Data »
Mengmeng Li · Tobias Sutter · Daniel Kuhn -
2021 Spotlight: Principal Component Hierarchy for Sparse Quadratic Programs »
Robbie Vreugdenhil · Viet Anh Nguyen · Armin Eftekhari · Peyman Mohajerin Esfahani -
2021 Spotlight: Distributionally Robust Optimization with Markovian Data »
Mengmeng Li · Tobias Sutter · Daniel Kuhn -
2020 Poster: Robust Bayesian Classification Using An Optimistic Score Ratio »
Viet Anh Nguyen · Nian Si · Jose Blanchet -
2020 Poster: Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits »
Nian Si · Fan Zhang · Zhengyuan Zhou · Jose Blanchet -
2019 Poster: Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning »
Casey Chu · Jose Blanchet · Peter Glynn -
2019 Oral: Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning »
Casey Chu · Jose Blanchet · Peter Glynn