Timezone: »
Spotlight
Self Normalizing Flows
T. Anderson Keller · Jorn Peters · Priyank Jaini · Emiel Hoogeboom · Patrick Forré · Max Welling
Efficient gradient computation of the Jacobian determinant term is a core problem in many machine learning settings, and especially so in the normalizing flow framework. Most proposed flow models therefore either restrict to a function class with easy evaluation of the Jacobian determinant, or an efficient estimator thereof. However, these restrictions limit the performance of such density models, frequently requiring significant depth to reach desired performance levels. In this work, we propose \emph{Self Normalizing Flows}, a flexible framework for training normalizing flows by replacing expensive terms in the gradient by learned approximate inverses at each layer. This reduces the computational complexity of each layer's exact update from $\mathcal{O}(D^3)$ to $\mathcal{O}(D^2)$, allowing for the training of flow architectures which were otherwise computationally infeasible, while also providing efficient sampling. We show experimentally that such models are remarkably stable and optimize to similar data likelihood values as their exact gradient counterparts, while training more quickly and surpassing the performance of functionally constrained counterparts.
Author Information
T. Anderson Keller (University of Amsterdam)
Jorn Peters (University of Amsterdam)
Priyank Jaini (University of Amsterdam)
Emiel Hoogeboom (University of Amsterdam)
Patrick Forré (University of Amsterdam)
Max Welling (University of Amsterdam & Qualcomm)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Self Normalizing Flows »
Tue. Jul 20th 04:00 -- 06:00 PM Room Virtual
More from the Same Authors
-
2022 : Path Integral Stochastic Optimal Control for Sampling Transition Paths »
Lars Holdijk · Yuanqi Du · Priyank Jaini · Ferry Hooft · Bernd Ensing · Max Welling -
2023 : Simulation-based Inference with the Generalized Kullback-Leibler Divergence »
Benjamin Kurt Miller · Marco Federici · Christoph Weniger · Patrick Forré -
2023 : Lie Point Symmetry and Physics Informed Networks »
Tara Akhound-Sadegh · Laurence Perreault-Levasseur · Johannes Brandstetter · Max Welling · Siamak Ravanbakhsh -
2023 Workshop: Structured Probabilistic Inference and Generative Modeling »
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio -
2023 : Opening Remark »
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio -
2023 Poster: simple diffusion: End-to-end diffusion for high resolution images »
Emiel Hoogeboom · Jonathan Heek · Tim Salimans -
2023 Poster: Neural Wave Machines: Learning Spatiotemporally Structured Representations with Locally Coupled Oscillatory Recurrent Neural Networks »
T. Anderson Keller · Max Welling -
2023 Poster: DUET: 2D Structured and Approximately Equivariant Representations »
Xavi Suau · Federico Danieli · T. Anderson Keller · Arno Blaas · Chen Huang · Jason Ramapuram · Dan Busbridge · Luca Zappella -
2023 Poster: Latent Traversals in Generative Models as Potential Flows »
Yue Song · T. Anderson Keller · Nicu Sebe · Max Welling -
2023 Poster: Geometric Clifford Algebra Networks »
David Ruhe · Jayesh K. Gupta · Steven De Keninck · Max Welling · Johannes Brandstetter -
2022 Poster: Lie Point Symmetry Data Augmentation for Neural PDE Solvers »
Johannes Brandstetter · Max Welling · Daniel Worrall -
2022 Spotlight: Lie Point Symmetry Data Augmentation for Neural PDE Solvers »
Johannes Brandstetter · Max Welling · Daniel Worrall -
2022 Poster: Equivariant Diffusion for Molecule Generation in 3D »
Emiel Hoogeboom · Victor Garcia Satorras · Clément Vignac · Max Welling -
2022 Oral: Equivariant Diffusion for Molecule Generation in 3D »
Emiel Hoogeboom · Victor Garcia Satorras · Clément Vignac · Max Welling -
2021 Test Of Time: Bayesian Learning via Stochastic Gradient Langevin Dynamics »
Yee Teh · Max Welling -
2021 Test Of Time: Test of Time Award »
Max Welling · Max Welling -
2021 Poster: Selecting Data Augmentation for Simulating Interventions »
Maximilian Ilse · Jakub Tomczak · Patrick Forré -
2021 Poster: The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning »
Roberto Bondesan · Max Welling -
2021 Spotlight: The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning »
Roberto Bondesan · Max Welling -
2021 Spotlight: Selecting Data Augmentation for Simulating Interventions »
Maximilian Ilse · Jakub Tomczak · Patrick Forré -
2021 Poster: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Marc Finzi · Max Welling · Andrew Wilson -
2021 Oral: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Marc Finzi · Max Welling · Andrew Wilson -
2021 Poster: Federated Learning of User Verification Models Without Sharing Embeddings »
Hossein Hosseini · Hyunsin Park · Sungrack Yun · Christos Louizos · Joseph B Soriaga · Max Welling -
2021 Poster: E(n) Equivariant Graph Neural Networks »
Victor Garcia Satorras · Emiel Hoogeboom · Max Welling -
2021 Spotlight: E(n) Equivariant Graph Neural Networks »
Victor Garcia Satorras · Emiel Hoogeboom · Max Welling -
2021 Spotlight: Federated Learning of User Verification Models Without Sharing Embeddings »
Hossein Hosseini · Hyunsin Park · Sungrack Yun · Christos Louizos · Joseph B Soriaga · Max Welling -
2020 : Invited talk 1: Unifying VAEs and Flows »
Max Welling -
2020 Poster: Involutive MCMC: a Unifying Framework »
Kirill Neklyudov · Max Welling · Evgenii Egorov · Dmitry Vetrov -
2020 Poster: Predictive Sampling with Forecasting Autoregressive Models »
Auke Wiggers · Emiel Hoogeboom -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Panel Discussion (moderator: Tom Dietterich) »
Max Welling · Kilian Weinberger · Terrance Boult · Dawn Song · Thomas Dietterich -
2019 : Keynote by Max Welling: A Nonparametric Bayesian Approach to Deep Learning (without GPs) »
Max Welling -
2019 Workshop: Joint Workshop on On-Device Machine Learning & Compact Deep Neural Network Representations (ODML-CDNNR) »
Sujith Ravi · Zornitsa Kozareva · Lixin Fan · Max Welling · Yurong Chen · Werner Bailer · Brian Kulis · Haoji Hu · Jonathan Dekhtiar · Yingyan Lin · Diana Marculescu -
2019 Workshop: Theoretical Physics for Deep Learning »
Jaehoon Lee · Jeffrey Pennington · Yasaman Bahri · Max Welling · Surya Ganguli · Joan Bruna -
2019 : Opening Remarks »
Jaehoon Lee · Jeffrey Pennington · Yasaman Bahri · Max Welling · Surya Ganguli · Joan Bruna -
2019 Poster: Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement »
Wouter Kool · Herke van Hoof · Max Welling -
2019 Oral: Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement »
Wouter Kool · Herke van Hoof · Max Welling -
2019 Poster: Emerging Convolutions for Generative Normalizing Flows »
Emiel Hoogeboom · Rianne Van den Berg · Max Welling -
2019 Oral: Emerging Convolutions for Generative Normalizing Flows »
Emiel Hoogeboom · Rianne Van den Berg · Max Welling -
2019 Poster: Gauge Equivariant Convolutional Networks and the Icosahedral CNN »
Taco Cohen · Maurice Weiler · Berkay Kicanaoglu · Max Welling -
2019 Oral: Gauge Equivariant Convolutional Networks and the Icosahedral CNN »
Taco Cohen · Maurice Weiler · Berkay Kicanaoglu · Max Welling -
2018 Poster: Attention-based Deep Multiple Instance Learning »
Maximilian Ilse · Jakub Tomczak · Max Welling -
2018 Oral: Attention-based Deep Multiple Instance Learning »
Maximilian Ilse · Jakub Tomczak · Max Welling -
2018 Invited Talk: Intelligence per Kilowatthour »
Max Welling -
2018 Poster: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2018 Poster: BOCK : Bayesian Optimization with Cylindrical Kernels »
ChangYong Oh · Efstratios Gavves · Max Welling -
2018 Oral: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2018 Oral: BOCK : Bayesian Optimization with Cylindrical Kernels »
ChangYong Oh · Efstratios Gavves · Max Welling -
2017 Poster: Multiplicative Normalizing Flows for Variational Bayesian Neural Networks »
Christos Louizos · Max Welling -
2017 Talk: Multiplicative Normalizing Flows for Variational Bayesian Neural Networks »
Christos Louizos · Max Welling