Timezone: »
This paper studies unsupervised/self-supervised whole-graph representation learning, which is critical in many tasks such as molecule properties prediction in drug and material discovery. Existing methods mainly focus on preserving the local similarity structure between different graph instances but fail to discover the global semantic structure of the entire data set. In this paper, we propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning. Specifically, besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters. An efficient online expectation-maximization (EM) algorithm is further developed for learning the model. We evaluate GraphLoG by pre-training it on massive unlabeled graphs followed by fine-tuning on downstream tasks. Extensive experiments on both chemical and biological benchmark data sets demonstrate the effectiveness of the proposed approach.
Author Information
Minghao Xu (Shanghai Jiao Tong University)
Hang Wang (Shanghai Jiao Tong University)
Bingbing Ni (Shanghai Jiao Tong University)
Hongyu Guo (National Research Council Canada)
Jian Tang (HEC Montreal & MILA)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Fri. Jul 23rd 12:20 -- 12:25 AM Room
More from the Same Authors
-
2023 : A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs »
Zhaocheng Zhu · Xinyu Yuan · Mikhail Galkin · Louis-Pascal Xhonneux · Ming Zhang · Maxime Gazeau · Jian Tang -
2022 Poster: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Zhaocheng Zhu · Mikhail Galkin · Zuobai Zhang · Jian Tang -
2022 Spotlight: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Zhaocheng Zhu · Mikhail Galkin · Zuobai Zhang · Jian Tang -
2021 Poster: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Poster: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Oral: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Opening Remarks: Jian Tang & Le Song »
Jian Tang · Le Song -
2020 Poster: A Graph to Graphs Framework for Retrosynthesis Prediction »
Chence Shi · Minkai Xu · Hongyu Guo · Ming Zhang · Jian Tang -
2020 Poster: Video Prediction via Example Guidance »
Jingwei Xu · Harry (Huazhe) Xu · Bingbing Ni · Xiaokang Yang · Trevor Darrell -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs »
Meng Qu · Tianyu Gao · Louis-Pascal Xhonneux · Jian Tang -
2020 Poster: Continuous Graph Neural Networks »
Louis-Pascal Xhonneux · Meng Qu · Jian Tang -
2019 Poster: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang