Timezone: »
The maximum mean discrepancy (MMD) test could in principle detect any distributional discrepancy between two datasets. However, it has been shown that the MMD test is unaware of adversarial attacks--the MMD test failed to detect the discrepancy between natural data and adversarial data. Given this phenomenon, we raise a question: are natural and adversarial data really from different distributions? The answer is affirmative--the previous use of the MMD test on the purpose missed three key factors, and accordingly, we propose three components. Firstly, the Gaussian kernel has limited representation power, and we replace it with an effective deep kernel. Secondly, the test power of the MMD test was neglected, and we maximize it following asymptotic statistics. Finally, adversarial data may be non-independent, and we overcome this issue with the help of wild bootstrap. By taking care of the three factors, we verify that the MMD test is aware of adversarial attacks, which lights up a novel road for adversarial data detection based on two-sample tests.
Author Information
Ruize Gao (Hong Kong Baptist University)
Feng Liu (University of Technology Sydney)
I am a machine learning researcher with research interests in hypothesis testing and trustworthy machine learning. I am currently an Assistant Professor in Statistics (Data Science) at the School of Mathematics and Statistics, The University of Melbourne, Australia. We are also running the Trustworthy Machine Learning and Reasoning (TMLR) Lab where I am one of co-directors (see this page for details). In addition, I am a Visiting Scientist at RIKEN-AIP, Japan, and a Visting Fellow at DeSI Lab, Australian Artificial Intelligence Institute, University of Technology Sydney. I was the recipient of the Australian Laureate postdoctoral fellowship. I received my Ph.D. degree in computer science at the University of Technology Sydney in 2020, advised by Dist. Prof. Jie Lu and Prof. Guangquan Zhang. I was a research intern at the RIKEN-AIP, working on the robust domain adaptation project with Prof. Masashi Sugiyama, Dr. Gang Niu and Dr. Bo Han. I visited Gatsby Computational Neuroscience Unit at UCL and worked on the hypothesis testing project with Prof. Arthur Gretton, Dr. Danica J. Sutherland and Dr. Wenkai Xu. I have received the Outstanding Paper Award of NeurIPS (2022), the Outstanding Reviewer Award of NeurIPS (2021), the Outstanding Reviewer Award of ICLR (2021), the UTS-FEIT HDR Research Excellence Award (2019). My publications are mainly distributed in high-quality journals or conferences, such as Nature Communications, IEEE-TPAMI, IEEE-TNNLS, IEEE-TFS, NeurIPS, ICML, ICLR, KDD, IJCAI, and AAAI. I have served as a senior program committee (SPC) member for IJCAI, ECAI and program committee (PC) members for NeurIPS, ICML, ICLR, AISTATS, ACML, AAAI and so on. I also serve as reviewers for many academic journals, such as JMLR, IEEE-TPAMI, IEEE-TNNLS, IEEE-TFS and so on.
Jingfeng Zhang (RIKEN)
Bo Han (HKBU / RIKEN)
Tongliang Liu (The University of Sydney)
Gang Niu (RIKEN)

Gang Niu is currently an indefinite-term senior research scientist at RIKEN Center for Advanced Intelligence Project.
Masashi Sugiyama (RIKEN / The University of Tokyo)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Fri. Jul 23rd 04:00 -- 06:00 AM Room
More from the Same Authors
-
2022 : Invariance Principle Meets Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · Kaili MA · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2023 : Advancing Counterfactual Inference through Quantile Regression »
Shaoan Xie · Biwei Huang · Bin Gu · Tongliang Liu · Kun Zhang -
2023 : Invited Talk 3: Masashi Sugiyama (RIKEN & UTokyo) - Data distribution shift »
Masashi Sugiyama -
2023 : Enriching Disentanglement: Definitions to Metrics »
Yivan Zhang · Masashi Sugiyama -
2023 Poster: Mitigating Memorization of Noisy Labels by Clipping the Model Prediction »
Hongxin Wei · HUIPING ZHUANG · RENCHUNZI XIE · Lei Feng · Gang Niu · Bo An · Sharon Li -
2023 Poster: GAT: Guided Adversarial Training with Pareto-optimal Auxiliary Tasks »
Salah GHAMIZI · Jingfeng ZHANG · Maxime Cordy · Mike Papadakis · Masashi Sugiyama · YVES LE TRAON -
2023 Poster: Eliminating Adversarial Noise via Information Discard and Robust Representation Restoration »
Dawei Zhou · Yukun Chen · Nannan Wang · Decheng Liu · Xinbo Gao · Tongliang Liu -
2023 Poster: Diversity-enhancing Generative Network for Few-shot Hypothesis Adaptation »
Ruijiang Dong · Feng Liu · Haoang Chi · Tongliang Liu · Mingming Gong · Gang Niu · Masashi Sugiyama · Bo Han -
2023 Poster: Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability »
Jianing Zhu · Hengzhuang Li · Jiangchao Yao · Tongliang Liu · Jianliang Xu · Bo Han -
2023 Poster: A Universal Unbiased Method for Classification from Aggregate Observations »
Zixi Wei · Lei Feng · Bo Han · Tongliang Liu · Gang Niu · Xiaofeng Zhu · Heng Tao Shen -
2023 Poster: Optimality of Thompson Sampling with Noninformative Priors for Pareto Bandits »
Jongyeong Lee · Junya Honda · Chao-Kai Chiang · Masashi Sugiyama -
2023 Poster: Exploring Model Dynamics for Accumulative Poisoning Discovery »
Jianing Zhu · Xiawei Guo · Jiangchao Yao · Chao Du · LI He · Shuo Yuan · Tongliang Liu · Liang Wang · Bo Han -
2023 Poster: Evolving Semantic Prototype Improves Generative Zero-Shot Learning »
Shiming Chen · Wenjin Hou · Ziming Hong · Xiaohan Ding · Yibing Song · Xinge You · Tongliang Liu · Kun Zhang -
2023 Poster: A Category-theoretical Meta-analysis of Definitions of Disentanglement »
Yivan Zhang · Masashi Sugiyama -
2023 Poster: Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? »
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu -
2023 Poster: Phase-aware Adversarial Defense for Improving Adversarial Robustness »
Dawei Zhou · Nannan Wang · Heng Yang · Xinbo Gao · Tongliang Liu -
2023 Poster: Detecting Out-of-distribution Data through In-distribution Class Prior »
Xue JIANG · Feng Liu · zhen fang · Hong Chen · Tongliang Liu · Feng Zheng · Bo Han -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Poster: Adversarial Attack and Defense for Non-Parametric Two-Sample Tests »
Xilie Xu · Jingfeng Zhang · Feng Liu · Masashi Sugiyama · Mohan Kankanhalli -
2022 Poster: Adaptive Inertia: Disentangling the Effects of Adaptive Learning Rate and Momentum »
Zeke Xie · Xinrui Wang · Huishuai Zhang · Issei Sato · Masashi Sugiyama -
2022 Poster: Modeling Adversarial Noise for Adversarial Training »
Dawei Zhou · Nannan Wang · Bo Han · Tongliang Liu -
2022 Poster: Improving Adversarial Robustness via Mutual Information Estimation »
Dawei Zhou · Nannan Wang · Xinbo Gao · Bo Han · Xiaoyu Wang · Yibing Zhan · Tongliang Liu -
2022 Spotlight: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Spotlight: Adversarial Attack and Defense for Non-Parametric Two-Sample Tests »
Xilie Xu · Jingfeng Zhang · Feng Liu · Masashi Sugiyama · Mohan Kankanhalli -
2022 Spotlight: Improving Adversarial Robustness via Mutual Information Estimation »
Dawei Zhou · Nannan Wang · Xinbo Gao · Bo Han · Xiaoyu Wang · Yibing Zhan · Tongliang Liu -
2022 Spotlight: Modeling Adversarial Noise for Adversarial Training »
Dawei Zhou · Nannan Wang · Bo Han · Tongliang Liu -
2022 Oral: Adaptive Inertia: Disentangling the Effects of Adaptive Learning Rate and Momentum »
Zeke Xie · Xinrui Wang · Huishuai Zhang · Issei Sato · Masashi Sugiyama -
2022 Poster: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Spotlight: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 Poster: Towards Defending against Adversarial Examples via Attack-Invariant Features »
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao -
2021 Poster: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Poster: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection »
Hanshu YAN · Jingfeng Zhang · Gang Niu · Jiashi Feng · Vincent Tan · Masashi Sugiyama -
2021 Spotlight: CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection »
Hanshu YAN · Jingfeng Zhang · Gang Niu · Jiashi Feng · Vincent Tan · Masashi Sugiyama -
2021 Spotlight: Towards Defending against Adversarial Examples via Attack-Invariant Features »
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao -
2021 Spotlight: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: Mediated Uncoupled Learning: Learning Functions without Direct Input-output Correspondences »
Ikko Yamane · Junya Honda · Florian YGER · Masashi Sugiyama -
2021 Poster: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Poster: Pointwise Binary Classification with Pairwise Confidence Comparisons »
Lei Feng · Senlin Shu · Nan Lu · Bo Han · Miao Xu · Gang Niu · Bo An · Masashi Sugiyama -
2021 Poster: Binary Classification from Multiple Unlabeled Datasets via Surrogate Set Classification »
Nan Lu · Shida Lei · Gang Niu · Issei Sato · Masashi Sugiyama -
2021 Poster: Learning from Similarity-Confidence Data »
Yuzhou Cao · Lei Feng · Yitian Xu · Bo An · Gang Niu · Masashi Sugiyama -
2021 Poster: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2021 Poster: Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization »
Yivan Zhang · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learning from Similarity-Confidence Data »
Yuzhou Cao · Lei Feng · Yitian Xu · Bo An · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Pointwise Binary Classification with Pairwise Confidence Comparisons »
Lei Feng · Senlin Shu · Nan Lu · Bo Han · Miao Xu · Gang Niu · Bo An · Masashi Sugiyama -
2021 Spotlight: Mediated Uncoupled Learning: Learning Functions without Direct Input-output Correspondences »
Ikko Yamane · Junya Honda · Florian YGER · Masashi Sugiyama -
2021 Spotlight: Binary Classification from Multiple Unlabeled Datasets via Surrogate Set Classification »
Nan Lu · Shida Lei · Gang Niu · Issei Sato · Masashi Sugiyama -
2021 Oral: Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization »
Yivan Zhang · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Oral: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2021 Poster: Lower-Bounded Proper Losses for Weakly Supervised Classification »
Shuhei M Yoshida · Takashi Takenouchi · Masashi Sugiyama -
2021 Poster: Classification with Rejection Based on Cost-sensitive Classification »
Nontawat Charoenphakdee · Zhenghang Cui · Yivan Zhang · Masashi Sugiyama -
2021 Spotlight: Classification with Rejection Based on Cost-sensitive Classification »
Nontawat Charoenphakdee · Zhenghang Cui · Yivan Zhang · Masashi Sugiyama -
2021 Spotlight: Lower-Bounded Proper Losses for Weakly Supervised Classification »
Shuhei M Yoshida · Takashi Takenouchi · Masashi Sugiyama -
2021 Poster: Large-Margin Contrastive Learning with Distance Polarization Regularizer »
Shuo Chen · Gang Niu · Chen Gong · Jun Li · Jian Yang · Masashi Sugiyama -
2021 Poster: Learning Bounds for Open-Set Learning »
Zhen Fang · Jie Lu · Anjin Liu · Feng Liu · Guangquan Zhang -
2021 Poster: Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization »
Zeke Xie · Li Yuan · Zhanxing Zhu · Masashi Sugiyama -
2021 Spotlight: Learning Bounds for Open-Set Learning »
Zhen Fang · Jie Lu · Anjin Liu · Feng Liu · Guangquan Zhang -
2021 Spotlight: Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization »
Zeke Xie · Li Yuan · Zhanxing Zhu · Masashi Sugiyama -
2021 Spotlight: Large-Margin Contrastive Learning with Distance Polarization Regularizer »
Shuo Chen · Gang Niu · Chen Gong · Jun Li · Jian Yang · Masashi Sugiyama -
2020 Poster: Few-shot Domain Adaptation by Causal Mechanism Transfer »
Takeshi Teshima · Issei Sato · Masashi Sugiyama -
2020 Poster: Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks »
Yonggang Zhang · Ya Li · Tongliang Liu · Xinmei Tian -
2020 Poster: Do We Need Zero Training Loss After Achieving Zero Training Error? »
Takashi Ishida · Ikko Yamane · Tomoya Sakai · Gang Niu · Masashi Sugiyama -
2020 Poster: Progressive Identification of True Labels for Partial-Label Learning »
Jiaqi Lv · Miao Xu · LEI FENG · Gang Niu · Xin Geng · Masashi Sugiyama -
2020 Poster: Learning with Bounded Instance- and Label-dependent Label Noise »
Jiacheng Cheng · Tongliang Liu · Kotagiri Ramamohanarao · Dacheng Tao -
2020 Poster: Online Dense Subgraph Discovery via Blurred-Graph Feedback »
Yuko Kuroki · Atsushi Miyauchi · Junya Honda · Masashi Sugiyama -
2020 Poster: SIGUA: Forgetting May Make Learning with Noisy Labels More Robust »
Bo Han · Gang Niu · Xingrui Yu · QUANMING YAO · Miao Xu · Ivor Tsang · Masashi Sugiyama -
2020 Poster: Label-Noise Robust Domain Adaptation »
Xiyu Yu · Tongliang Liu · Mingming Gong · Kun Zhang · Kayhan Batmanghelich · Dacheng Tao -
2020 Poster: Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels »
Yu-Ting Chou · Gang Niu · Hsuan-Tien (Tien) Lin · Masashi Sugiyama -
2020 Poster: Attacks Which Do Not Kill Training Make Adversarial Learning Stronger »
Jingfeng Zhang · Xilie Xu · Bo Han · Gang Niu · Lizhen Cui · Masashi Sugiyama · Mohan Kankanhalli -
2020 Poster: Accelerating the diffusion-based ensemble sampling by non-reversible dynamics »
Futoshi Futami · Issei Sato · Masashi Sugiyama -
2020 Poster: Variational Imitation Learning with Diverse-quality Demonstrations »
Voot Tangkaratt · Bo Han · Mohammad Emtiyaz Khan · Masashi Sugiyama -
2020 Poster: LTF: A Label Transformation Framework for Correcting Label Shift »
Jiaxian Guo · Mingming Gong · Tongliang Liu · Kun Zhang · Dacheng Tao -
2020 Poster: Learning with Multiple Complementary Labels »
LEI FENG · Takuo Kaneko · Bo Han · Gang Niu · Bo An · Masashi Sugiyama -
2020 Poster: Searching to Exploit Memorization Effect in Learning with Noisy Labels »
QUANMING YAO · Hansi Yang · Bo Han · Gang Niu · James Kwok -
2020 Poster: Normalized Flat Minima: Exploring Scale Invariant Definition of Flat Minima for Neural Networks Using PAC-Bayesian Analysis »
Yusuke Tsuzuku · Issei Sato · Masashi Sugiyama -
2019 : Spotlight »
Tyler Scott · Kiran Thekumparampil · Jonathan Aigrain · Rene Bidart · Priyadarshini Panda · Dian Ang Yap · Yaniv Yacoby · Raphael Gontijo Lopes · Alberto Marchisio · Erik Englesson · Wanqian Yang · Moritz Graule · Yi Sun · Daniel Kang · Mike Dusenberry · Min Du · Hartmut Maennel · Kunal Menda · Vineet Edupuganti · Luke Metz · David Stutz · Vignesh Srinivasan · Timo Sämann · Vineeth N Balasubramanian · Sina Mohseni · Rob Cornish · Judith Butepage · Zhangyang Wang · Bai Li · Bo Han · Honglin Li · Maksym Andriushchenko · Lukas Ruff · Meet P. Vadera · Yaniv Ovadia · Sunil Thulasidasan · Disi Ji · Gang Niu · Saeed Mahloujifar · Aviral Kumar · SANGHYUK CHUN · Dong Yin · Joyce Xu Xu · Hugo Gomes · Raanan Rohekar -
2019 Poster: Classification from Positive, Unlabeled and Biased Negative Data »
Yu-Guan Hsieh · Gang Niu · Masashi Sugiyama -
2019 Poster: Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations »
Quanming Yao · James Kwok · Bo Han -
2019 Poster: Complementary-Label Learning for Arbitrary Losses and Models »
Takashi Ishida · Gang Niu · Aditya Menon · Masashi Sugiyama -
2019 Oral: Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations »
Quanming Yao · James Kwok · Bo Han -
2019 Oral: Complementary-Label Learning for Arbitrary Losses and Models »
Takashi Ishida · Gang Niu · Aditya Menon · Masashi Sugiyama -
2019 Oral: Classification from Positive, Unlabeled and Biased Negative Data »
Yu-Guan Hsieh · Gang Niu · Masashi Sugiyama -
2019 Poster: How does Disagreement Help Generalization against Label Corruption? »
Xingrui Yu · Bo Han · Jiangchao Yao · Gang Niu · Ivor Tsang · Masashi Sugiyama -
2019 Oral: How does Disagreement Help Generalization against Label Corruption? »
Xingrui Yu · Bo Han · Jiangchao Yao · Gang Niu · Ivor Tsang · Masashi Sugiyama -
2019 Poster: Imitation Learning from Imperfect Demonstration »
Yueh-Hua Wu · Nontawat Charoenphakdee · Han Bao · Voot Tangkaratt · Masashi Sugiyama -
2019 Poster: On Symmetric Losses for Learning from Corrupted Labels »
Nontawat Charoenphakdee · Jongyeong Lee · Masashi Sugiyama -
2019 Oral: Imitation Learning from Imperfect Demonstration »
Yueh-Hua Wu · Nontawat Charoenphakdee · Han Bao · Voot Tangkaratt · Masashi Sugiyama -
2019 Oral: On Symmetric Losses for Learning from Corrupted Labels »
Nontawat Charoenphakdee · Jongyeong Lee · Masashi Sugiyama -
2018 Poster: Classification from Pairwise Similarity and Unlabeled Data »
Han Bao · Gang Niu · Masashi Sugiyama -
2018 Oral: Classification from Pairwise Similarity and Unlabeled Data »
Han Bao · Gang Niu · Masashi Sugiyama -
2018 Poster: Does Distributionally Robust Supervised Learning Give Robust Classifiers? »
Weihua Hu · Gang Niu · Issei Sato · Masashi Sugiyama -
2018 Oral: Does Distributionally Robust Supervised Learning Give Robust Classifiers? »
Weihua Hu · Gang Niu · Issei Sato · Masashi Sugiyama -
2018 Poster: Analysis of Minimax Error Rate for Crowdsourcing and Its Application to Worker Clustering Model »
Hideaki Imamura · Issei Sato · Masashi Sugiyama -
2018 Oral: Analysis of Minimax Error Rate for Crowdsourcing and Its Application to Worker Clustering Model »
Hideaki Imamura · Issei Sato · Masashi Sugiyama -
2017 Poster: Learning Discrete Representations via Information Maximizing Self-Augmented Training »
Weihua Hu · Takeru Miyato · Seiya Tokui · Eiichi Matsumoto · Masashi Sugiyama -
2017 Talk: Learning Discrete Representations via Information Maximizing Self-Augmented Training »
Weihua Hu · Takeru Miyato · Seiya Tokui · Eiichi Matsumoto · Masashi Sugiyama -
2017 Poster: Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data »
Tomoya Sakai · Marthinus C du Plessis · Gang Niu · Masashi Sugiyama -
2017 Talk: Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data »
Tomoya Sakai · Marthinus C du Plessis · Gang Niu · Masashi Sugiyama