Timezone: »
Symmetric functions, which take as input an unordered, fixed-size set, are known to be universally representable by neural networks that enforce permutation invariance. These architectures only give guarantees for fixed input sizes, yet in many practical applications, including point clouds and particle physics, a relevant notion of generalization should include varying the input size. In this work we treat symmetric functions (of any size) as functions over probability measures, and study the learning and representation of neural networks defined on measures. By focusing on shallow architectures, we establish approximation and generalization bounds under different choices of regularization (such as RKHS and variation norms), that capture a hierarchy of functional spaces with increasing degree of non-linear learning. The resulting models can be learned efficiently and enjoy generalization guarantees that extend across input sizes, as we verify empirically.
Author Information
Aaron Zweig (New York University)
Joan Bruna (New York University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: A Functional Perspective on Learning Symmetric Functions with Neural Networks »
Tue. Jul 20th 04:00 -- 06:00 PM Room Virtual
More from the Same Authors
-
2022 Poster: Extended Unconstrained Features Model for Exploring Deep Neural Collapse »
Tom Tirer · Joan Bruna -
2022 Spotlight: Extended Unconstrained Features Model for Exploring Deep Neural Collapse »
Tom Tirer · Joan Bruna -
2021 Workshop: ICML Workshop on Representation Learning for Finance and E-Commerce Applications »
Senthil Kumar · Sameena Shah · Joan Bruna · Tom Goldstein · Erik Mueller · Oleg Rokhlenko · Hongxia Yang · Jianpeng Xu · Oluwatobi O Olabiyi · Charese Smiley · C. Bayan Bruss · Saurabh H Nagrecha · Svitlana Vyetrenko -
2021 Poster: On Energy-Based Models with Overparametrized Shallow Neural Networks »
Carles Domingo-Enrich · Alberto Bietti · Eric Vanden-Eijnden · Joan Bruna -
2021 Oral: On Energy-Based Models with Overparametrized Shallow Neural Networks »
Carles Domingo-Enrich · Alberto Bietti · Eric Vanden-Eijnden · Joan Bruna -
2021 Poster: Offline Contextual Bandits with Overparameterized Models »
David Brandfonbrener · William Whitney · Rajesh Ranganath · Joan Bruna -
2021 Spotlight: Offline Contextual Bandits with Overparameterized Models »
David Brandfonbrener · William Whitney · Rajesh Ranganath · Joan Bruna -
2020 Poster: Extra-gradient with player sampling for faster convergence in n-player games »
Samy Jelassi · Carles Domingo-Enrich · Damien Scieur · Arthur Mensch · Joan Bruna -
2019 Workshop: Theoretical Physics for Deep Learning »
Jaehoon Lee · Jeffrey Pennington · Yasaman Bahri · Max Welling · Surya Ganguli · Joan Bruna -
2019 : Opening Remarks »
Jaehoon Lee · Jeffrey Pennington · Yasaman Bahri · Max Welling · Surya Ganguli · Joan Bruna -
2019 Poster: Neuron birth-death dynamics accelerates gradient descent and converges asymptotically »
Grant Rotskoff · Samy Jelassi · Joan Bruna · Eric Vanden-Eijnden -
2019 Oral: Neuron birth-death dynamics accelerates gradient descent and converges asymptotically »
Grant Rotskoff · Samy Jelassi · Joan Bruna · Eric Vanden-Eijnden -
2019 Poster: Approximating Orthogonal Matrices with Effective Givens Factorization »
Thomas Frerix · Joan Bruna -
2019 Oral: Approximating Orthogonal Matrices with Effective Givens Factorization »
Thomas Frerix · Joan Bruna