Timezone: »
The problem of adversarial examples has highlighted the need for a theory of regularisation that is general enough to apply to exotic function classes, such as universal approximators. In response, we have been able to significantly sharpen existing results regarding the relationship between distributional robustness and regularisation, when defined with a transportation cost uncertainty set. The theory allows us to characterise the conditions under which the distributional robustness equals a Lipschitz-regularised model, and to tightly quantify, for the first time, the slackness under very mild assumptions. As a theoretical application we show a new result explicating the connection between adversarial learning and distributional robustness. We then give new results for how to achieve Lipschitz regularisation of kernel classifiers, which are demonstrated experimentally.
Author Information
Zac Cranko (Universität Tübingen)
Zhan Shi (University of Illinois at Chicago)
Xinhua Zhang (University of Illinois at Chicago)
Richard Nock (Google Brain)
Simon Kornblith (Google Brain)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Generalised Lipschitz Regularisation Equals Distributional Robustness »
Wed. Jul 21st 04:00 -- 06:00 PM Room Virtual
More from the Same Authors
-
2021 : On the Origins of the Block Structure Phenomenon in Neural Network Representations »
Thao Nguyen · Maithra Raghu · Simon Kornblith -
2023 Poster: Actor-Critic Alignment for Offline-to-Online Reinforcement Learning »
Zishun Yu · Xinhua Zhang -
2023 Poster: On the Relationship Between Explanation and Prediction: A Causal View »
Amir-Hossein Karimi · Krikamol Muandet · Simon Kornblith · Bernhard Schölkopf · Been Kim -
2023 Poster: Poisoning Generative Replay in Continual Learning to Promote Forgetting »
Siteng Kang · Zhan Shi · Xinhua Zhang -
2023 Poster: LegendreTron: Uprising Proper Multiclass Loss Learning »
Kevin Ho Fai Lam · Christian Walder · Spiridon Penev · Richard Nock -
2023 Poster: Fair Densities via Boosting the Sufficient Statistics of Exponential Families »
Alexander Soen · Hisham Husain · Richard Nock -
2023 Poster: Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice »
Yishay Mansour · Richard Nock · Robert C. Williamson -
2023 Oral: Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice »
Yishay Mansour · Richard Nock · Robert C. Williamson -
2022 Poster: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time »
Mitchell Wortsman · Gabriel Ilharco · Samir Gadre · Rebecca Roelofs · Raphael Gontijo Lopes · Ari Morcos · Hongseok Namkoong · Ali Farhadi · Yair Carmon · Simon Kornblith · Ludwig Schmidt -
2022 Poster: Neural Network Poisson Models for Behavioural and Neural Spike Train Data »
Moein Khajehnejad · Forough Habibollahi Saatlou · Richard Nock · Ehsan Arabzadeh · Peter Dayan · Amir Dezfouli -
2022 Spotlight: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time »
Mitchell Wortsman · Gabriel Ilharco · Samir Gadre · Rebecca Roelofs · Raphael Gontijo Lopes · Ari Morcos · Hongseok Namkoong · Ali Farhadi · Yair Carmon · Simon Kornblith · Ludwig Schmidt -
2022 Spotlight: Neural Network Poisson Models for Behavioural and Neural Spike Train Data »
Moein Khajehnejad · Forough Habibollahi Saatlou · Richard Nock · Ehsan Arabzadeh · Peter Dayan · Amir Dezfouli -
2022 Poster: Generative Trees: Adversarial and Copycat »
Richard Nock · Mathieu Guillame-Bert -
2022 Oral: Generative Trees: Adversarial and Copycat »
Richard Nock · Mathieu Guillame-Bert -
2022 Poster: Being Properly Improper »
Tyler Sypherd · Richard Nock · Lalitha Sankar -
2022 Spotlight: Being Properly Improper »
Tyler Sypherd · Richard Nock · Lalitha Sankar -
2021 Poster: The Impact of Record Linkage on Learning from Feature Partitioned Data »
Richard Nock · Stephen J Hardy · Wilko Henecka · Hamish Ivey-Law · Jakub Nabaglo · Giorgio Patrini · Guillaume Smith · Brian Thorne -
2021 Spotlight: The Impact of Record Linkage on Learning from Feature Partitioned Data »
Richard Nock · Stephen J Hardy · Wilko Henecka · Hamish Ivey-Law · Jakub Nabaglo · Giorgio Patrini · Guillaume Smith · Brian Thorne -
2020 Poster: Supervised learning: no loss no cry »
Richard Nock · Aditya Menon -
2020 Poster: Revisiting Spatial Invariance with Low-Rank Local Connectivity »
Gamaleldin Elsayed · Prajit Ramachandran · Jon Shlens · Simon Kornblith -
2020 Poster: A Simple Framework for Contrastive Learning of Visual Representations »
Ting Chen · Simon Kornblith · Mohammad Norouzi · Geoffrey Hinton -
2019 Poster: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Poster: Monge blunts Bayes: Hardness Results for Adversarial Training »
Zac Cranko · Aditya Menon · Richard Nock · Cheng Soon Ong · Zhan Shi · Christian Walder -
2019 Poster: Lossless or Quantized Boosting with Integer Arithmetic »
Richard Nock · Robert C Williamson -
2019 Oral: Lossless or Quantized Boosting with Integer Arithmetic »
Richard Nock · Robert C Williamson -
2019 Oral: Monge blunts Bayes: Hardness Results for Adversarial Training »
Zac Cranko · Aditya Menon · Richard Nock · Cheng Soon Ong · Zhan Shi · Christian Walder -
2019 Poster: Boosted Density Estimation Remastered »
Zac Cranko · Richard Nock -
2019 Oral: Boosted Density Estimation Remastered »
Zac Cranko · Richard Nock -
2018 Poster: Inductive Two-Layer Modeling with Parametric Bregman Transfer »
Vignesh Ganapathiraman · Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2018 Oral: Inductive Two-Layer Modeling with Parametric Bregman Transfer »
Vignesh Ganapathiraman · Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2018 Poster: Variational Network Inference: Strong and Stable with Concrete Support »
Amir Dezfouli · Edwin Bonilla · Richard Nock -
2018 Poster: Efficient and Consistent Adversarial Bipartite Matching »
Rizal Fathony · Sima Behpour · Xinhua Zhang · Brian Ziebart -
2018 Oral: Efficient and Consistent Adversarial Bipartite Matching »
Rizal Fathony · Sima Behpour · Xinhua Zhang · Brian Ziebart -
2018 Oral: Variational Network Inference: Strong and Stable with Concrete Support »
Amir Dezfouli · Edwin Bonilla · Richard Nock -
2017 Workshop: Human in the Loop Machine Learning »
Richard Nock · Cheng Soon Ong