Timezone: »
Learning models that gracefully handle distribution shifts is central to research on domain generalization, robust optimization, and fairness. A promising formulation is domain-invariant learning, which identifies the key issue of learning which features are domain-specific versus domain-invariant. An important assumption in this area is that the training examples are partitioned into domains'' or
environments''. Our focus is on the more common setting where such partitions are not provided. We propose EIIL, a general framework for domain-invariant learning that incorporates Environment Inference to directly infer partitions that are maximally informative for downstream Invariant Learning. We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels, and significantly outperforms ERM on worst-group performance in the Waterbirds dataset. Finally, we establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
Author Information
Elliot Creager (University of Toronto)
Joern-Henrik Jacobsen (Apple Inc.)
Richard Zemel (Vector Institute)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Environment Inference for Invariant Learning »
Thu. Jul 22nd 02:40 -- 02:45 PM Room
More from the Same Authors
-
2021 : Measuring User Recourse in a Dynamic Recommender System »
Dilys Dickson · Elliot Creager -
2021 : Online Algorithmic Recourse by Collective Action »
Elliot Creager · Richard Zemel -
2022 : Towards Environment-Invariant Representation Learning for Robust Task Transfer »
Benjamin Eyre · Richard Zemel · Elliot Creager -
2022 : MoCoDA: Model-based Counterfactual Data Augmentation »
Silviu Pitis · Elliot Creager · Ajay Mandlekar · Animesh Garg -
2023 : Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift »
Benjamin Eyre · Elliot Creager · David Madras · Vardan Papyan · Richard Zemel -
2023 Test Of Time: Learning Fair Representations »
Richard Zemel · Yu Wu · Kevin Swersky · Toniann Pitassi · Cynthia Dwork -
2022 : Invited talks 3, Q/A, Amy, Rich and Liting »
Liting Sun · Amy Zhang · Richard Zemel -
2022 : Invited talks 3, Amy Zhang, Rich Zemel and Liting Sun »
Amy Zhang · Richard Zemel · Liting Sun -
2021 Poster: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Poster: SketchEmbedNet: Learning Novel Concepts by Imitating Drawings »
Alexander Wang · Mengye Ren · Richard Zemel -
2021 Poster: Learning a Universal Template for Few-shot Dataset Generalization »
Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin -
2021 Spotlight: Learning a Universal Template for Few-shot Dataset Generalization »
Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin -
2021 Spotlight: SketchEmbedNet: Learning Novel Concepts by Imitating Drawings »
Alexander Wang · Mengye Ren · Richard Zemel -
2021 Oral: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Poster: Out-of-Distribution Generalization via Risk Extrapolation (REx) »
David Krueger · Ethan Caballero · Joern-Henrik Jacobsen · Amy Zhang · Jonathan Binas · Dinghuai Zhang · Remi Le Priol · Aaron Courville -
2021 Oral: Out-of-Distribution Generalization via Risk Extrapolation (REx) »
David Krueger · Ethan Caballero · Joern-Henrik Jacobsen · Amy Zhang · Jonathan Binas · Dinghuai Zhang · Remi Le Priol · Aaron Courville -
2021 Poster: On Monotonic Linear Interpolation of Neural Network Parameters »
James Lucas · Juhan Bae · Michael Zhang · Stanislav Fort · Richard Zemel · Roger Grosse -
2021 Spotlight: On Monotonic Linear Interpolation of Neural Network Parameters »
James Lucas · Juhan Bae · Michael Zhang · Stanislav Fort · Richard Zemel · Roger Grosse -
2020 : Invited Talk 4: Prof. Richard Zemel from University of Toronto »
Richard Zemel -
2020 Workshop: Participatory Approaches to Machine Learning »
Angela Zhou · David Madras · Deborah Raji · Smitha Milli · Bogdan Kulynych · Richard Zemel -
2020 Poster: How to Train Your Neural ODE: the World of Jacobian and Kinetic Regularization »
Chris Finlay · Joern-Henrik Jacobsen · Levon Nurbekyan · Adam Oberman -
2020 Poster: Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations »
Florian Tramer · Jens Behrmann · Nicholas Carlini · Nicolas Papernot · Joern-Henrik Jacobsen -
2020 Poster: Causal Modeling for Fairness In Dynamical Systems »
Elliot Creager · David Madras · Toniann Pitassi · Richard Zemel -
2020 Poster: Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach »
Martin Mladenov · Elliot Creager · Omer Ben-Porat · Kevin Swersky · Richard Zemel · Craig Boutilier -
2020 Poster: Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling »
Will Grathwohl · Kuan-Chieh Wang · Joern-Henrik Jacobsen · David Duvenaud · Richard Zemel -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 : Invertible Residual Networks and a Novel Perspective on Adversarial Examples »
Joern-Henrik Jacobsen -
2019 Poster: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Poster: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Oral: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Oral: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Poster: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Poster: Invertible Residual Networks »
Jens Behrmann · Will Grathwohl · Ricky T. Q. Chen · David Duvenaud · Joern-Henrik Jacobsen -
2019 Oral: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Oral: Invertible Residual Networks »
Jens Behrmann · Will Grathwohl · Ricky T. Q. Chen · David Duvenaud · Joern-Henrik Jacobsen -
2018 Poster: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Oral: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Poster: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · Kijung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Poster: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · Kijung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Poster: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2018 Oral: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2017 Poster: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel -
2017 Talk: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel