Timezone: »
Annealed Importance Sampling (AIS) and its Sequential Monte Carlo (SMC) extensions are state-of-the-art methods for estimating normalizing constants of probability distributions. We propose here a novel Monte Carlo algorithm, Annealed Flow Transport (AFT), that builds upon AIS and SMC and combines them with normalizing flows (NFs) for improved performance. This method transports a set of particles using not only importance sampling (IS), Markov chain Monte Carlo (MCMC) and resampling steps - as in SMC, but also relies on NFs which are learned sequentially to push particles towards the successive annealed targets. We provide limit theorems for the resulting Monte Carlo estimates of the normalizing constant and expectations with respect to the target distribution. Additionally, we show that a continuous-time scaling limit of the population version of AFT is given by a Feynman--Kac measure which simplifies to the law of a controlled diffusion for expressive NFs. We demonstrate experimentally the benefits and limitations of our methodology on a variety of applications.
Author Information
Michael Arbel (University College London)
Alexander Matthews (DeepMind)
Arnaud Doucet (Google DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Annealed Flow Transport Monte Carlo »
Thu. Jul 22nd 02:00 -- 02:20 PM Room
More from the Same Authors
-
2022 : Riemannian Diffusion Schr\"odinger Bridge »
James Thornton · Valentin De Bortoli · Michael Hutchinson · Emile Mathieu · Yee Whye Teh · Arnaud Doucet -
2023 : Diffusion Generative Inverse Design »
Marin Vlastelica · Tatiana Lopez-Guevara · Kelsey Allen · Peter Battaglia · Arnaud Doucet · Kimberly Stachenfeld -
2023 : Categorical SDEs with Simplex Diffusion »
Pierre Richemond · Sander Dieleman · Arnaud Doucet -
2023 Poster: Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC »
Yilun Du · Conor Durkan · Robin Strudel · Josh Tenenbaum · Sander Dieleman · Rob Fergus · Jascha Sohl-Dickstein · Arnaud Doucet · Will Grathwohl -
2023 Poster: SE(3) diffusion model with application to protein backbone generation »
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Importance Weighted Kernel Bayes' Rule »
Liyuan Xu · Yutian Chen · Arnaud Doucet · Arthur Gretton -
2022 Spotlight: Importance Weighted Kernel Bayes' Rule »
Liyuan Xu · Yutian Chen · Arnaud Doucet · Arthur Gretton -
2022 Poster: Continual Repeated Annealed Flow Transport Monte Carlo »
Alexander Matthews · Michael Arbel · Danilo J. Rezende · Arnaud Doucet -
2022 Spotlight: Continual Repeated Annealed Flow Transport Monte Carlo »
Alexander Matthews · Michael Arbel · Danilo J. Rezende · Arnaud Doucet -
2021 Poster: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Spotlight: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Poster: Differentiable Particle Filtering via Entropy-Regularized Optimal Transport »
Adrien Corenflos · James Thornton · George Deligiannidis · Arnaud Doucet -
2021 Oral: Differentiable Particle Filtering via Entropy-Regularized Optimal Transport »
Adrien Corenflos · James Thornton · George Deligiannidis · Arnaud Doucet -
2021 Poster: Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding »
Yangjun Ruan · Karen Ullrich · Daniel Severo · James Townsend · Ashish Khisti · Arnaud Doucet · Alireza Makhzani · Chris Maddison -
2021 Oral: Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding »
Yangjun Ruan · Karen Ullrich · Daniel Severo · James Townsend · Ashish Khisti · Arnaud Doucet · Alireza Makhzani · Chris Maddison -
2020 Poster: Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows »
Rob Cornish · Anthony Caterini · George Deligiannidis · Arnaud Doucet -
2019 Poster: Replica Conditional Sequential Monte Carlo »
Alex Shestopaloff · Arnaud Doucet -
2019 Poster: Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets »
Rob Cornish · Paul Vanetti · Alexandre Bouchard-Côté · George Deligiannidis · Arnaud Doucet -
2019 Oral: Replica Conditional Sequential Monte Carlo »
Alex Shestopaloff · Arnaud Doucet -
2019 Oral: Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets »
Rob Cornish · Paul Vanetti · Alexandre Bouchard-Côté · George Deligiannidis · Arnaud Doucet -
2019 Poster: On the Impact of the Activation function on Deep Neural Networks Training »
Soufiane Hayou · Arnaud Doucet · Judith Rousseau -
2019 Oral: On the Impact of the Activation function on Deep Neural Networks Training »
Soufiane Hayou · Arnaud Doucet · Judith Rousseau