Timezone: »
We consider repair tasks: given a critic (e.g., compiler) that assesses the quality of an input, the goal is to train a fixer that converts a bad example (e.g., code with syntax errors) into a good one (e.g., code with no errors). Existing works create training data consisting of (bad, good) pairs by corrupting good examples using heuristics (e.g., dropping tokens). However, fixers trained on this synthetically-generated data do not extrapolate well to the real distribution of bad inputs. To bridge this gap, we propose a new training approach, Break-It-Fix-It (BIFI), which has two key ideas: (i) we use the critic to check a fixer's output on real bad inputs and add good (fixed) outputs to the training data, and (ii) we train a breaker to generate realistic bad code from good code. Based on these ideas, we iteratively update the breaker and the fixer while using them in conjunction to generate more paired data. We evaluate BIFI on two code repair datasets: GitHub-Python, a new dataset we introduce where the goal is to repair Python code with AST parse errors; and DeepFix, where the goal is to repair C code with compiler errors. BIFI outperforms existing methods, obtaining 90.5% repair accuracy on GitHub-Python (+28.5%) and 71.7% on DeepFix (+5.6%). Notably, BIFI does not require any labeled data; we hope it will be a strong starting point for unsupervised learning of various repair tasks.
Author Information
Michihiro Yasunaga (Stanford University)
Percy Liang (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Break-It-Fix-It: Unsupervised Learning for Program Repair »
Thu. Jul 22nd 02:00 -- 02:20 AM Room
More from the Same Authors
-
2022 : LinkBERT: Language Model Pretraining with Document Link Knowledge »
Michihiro Yasunaga · Jure Leskovec · Percy Liang -
2022 : Discussion Panel »
Percy Liang · Léon Bottou · Jayashree Kalpathy-Cramer · Alex Smola -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 Poster: Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised Domain Adaptation »
Kendrick Shen · Robbie Jones · Ananya Kumar · Sang Michael Xie · Jeff Z. HaoChen · Tengyu Ma · Percy Liang -
2022 Oral: Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised Domain Adaptation »
Kendrick Shen · Robbie Jones · Ananya Kumar · Sang Michael Xie · Jeff Z. HaoChen · Tengyu Ma · Percy Liang -
2021 Poster: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Poster: Composed Fine-Tuning: Freezing Pre-Trained Denoising Autoencoders for Improved Generalization »
Sang Michael Xie · Tengyu Ma · Percy Liang -
2021 Oral: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Oral: Composed Fine-Tuning: Freezing Pre-Trained Denoising Autoencoders for Improved Generalization »
Sang Michael Xie · Tengyu Ma · Percy Liang -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Poster: Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
John Miller · Rohan Taori · Aditi Raghunathan · Shiori Sagawa · Pang Wei Koh · Vaishaal Shankar · Percy Liang · Yair Carmon · Ludwig Schmidt -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
John Miller · Rohan Taori · Aditi Raghunathan · Shiori Sagawa · Pang Wei Koh · Vaishaal Shankar · Percy Liang · Yair Carmon · Ludwig Schmidt -
2021 Poster: Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices »
Evan Liu · Aditi Raghunathan · Percy Liang · Chelsea Finn -
2021 Spotlight: Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices »
Evan Liu · Aditi Raghunathan · Percy Liang · Chelsea Finn -
2021 Poster: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Poster: Just Train Twice: Improving Group Robustness without Training Group Information »
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn -
2021 Spotlight: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Oral: Just Train Twice: Improving Group Robustness without Training Group Information »
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn -
2020 : Keynote #3 Percy Liang »
Percy Liang -
2020 Poster: Concept Bottleneck Models »
Pang Wei Koh · Thao Nguyen · Yew Siang Tang · Stephen Mussmann · Emma Pierson · Been Kim · Percy Liang -
2020 Poster: Graph-based, Self-Supervised Program Repair from Diagnostic Feedback »
Michihiro Yasunaga · Percy Liang -
2020 Poster: Understanding Self-Training for Gradual Domain Adaptation »
Ananya Kumar · Tengyu Ma · Percy Liang -
2020 Poster: Understanding and Mitigating the Tradeoff between Robustness and Accuracy »
Aditi Raghunathan · Sang Michael Xie · Fanny Yang · John Duchi · Percy Liang -
2020 Poster: An Investigation of Why Overparameterization Exacerbates Spurious Correlations »
Shiori Sagawa · aditi raghunathan · Pang Wei Koh · Percy Liang -
2020 Poster: Robustness to Spurious Correlations via Human Annotations »
Megha Srivastava · Tatsunori Hashimoto · Percy Liang -
2020 Poster: Feature Noise Induces Loss Discrepancy Across Groups »
Fereshte Khani · Percy Liang -
2019 Workshop: Workshop on the Security and Privacy of Machine Learning »
Nicolas Papernot · Florian Tramer · Bo Li · Dan Boneh · David Evans · Somesh Jha · Percy Liang · Patrick McDaniel · Jacob Steinhardt · Dawn Song -
2018 Poster: On the Relationship between Data Efficiency and Error for Uncertainty Sampling »
Stephen Mussmann · Percy Liang -
2018 Poster: Fairness Without Demographics in Repeated Loss Minimization »
Tatsunori Hashimoto · Megha Srivastava · Hongseok Namkoong · Percy Liang -
2018 Oral: Fairness Without Demographics in Repeated Loss Minimization »
Tatsunori Hashimoto · Megha Srivastava · Hongseok Namkoong · Percy Liang -
2018 Oral: On the Relationship between Data Efficiency and Error for Uncertainty Sampling »
Stephen Mussmann · Percy Liang -
2017 Poster: World of Bits: An Open-Domain Platform for Web-Based Agents »
Tim Shi · Andrej Karpathy · Jim Fan · Jonathan Hernandez · Percy Liang -
2017 Talk: World of Bits: An Open-Domain Platform for Web-Based Agents »
Tim Shi · Andrej Karpathy · Jim Fan · Jonathan Hernandez · Percy Liang -
2017 Poster: Developing Bug-Free Machine Learning Systems With Formal Mathematics »
Daniel Selsam · Percy Liang · David L Dill -
2017 Talk: Developing Bug-Free Machine Learning Systems With Formal Mathematics »
Daniel Selsam · Percy Liang · David L Dill -
2017 Poster: Convexified Convolutional Neural Networks »
Yuchen Zhang · Percy Liang · Martin Wainwright -
2017 Poster: Understanding Black-box Predictions via Influence Functions »
Pang Wei Koh · Percy Liang -
2017 Talk: Convexified Convolutional Neural Networks »
Yuchen Zhang · Percy Liang · Martin Wainwright -
2017 Talk: Understanding Black-box Predictions via Influence Functions »
Pang Wei Koh · Percy Liang