Timezone: »
We consider the problem of molecular graph generation using deep models. While graphs are discrete, most existing methods use continuous latent variables, resulting in inaccurate modeling of discrete graph structures. In this work, we propose GraphDF, a novel discrete latent variable model for molecular graph generation based on normalizing flow methods. GraphDF uses invertible modulo shift transforms to map discrete latent variables to graph nodes and edges. We show that the use of discrete latent variables reduces computational costs and eliminates the negative effect of dequantization. Comprehensive experimental results show that GraphDF outperforms prior methods on random generation, property optimization, and constrained optimization tasks.
Author Information
Youzhi Luo (Texas A&M University)
Keqiang Yan (Texas A&M University, College Station)
Shuiwang Ji (Texas A&M University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: GraphDF: A Discrete Flow Model for Molecular Graph Generation »
Tue. Jul 20th 04:00 -- 06:00 PM Room
More from the Same Authors
-
2022 Poster: Generating 3D Molecules for Target Protein Binding »
Meng Liu · Youzhi Luo · Kanji Uchino · Koji Maruhashi · Shuiwang Ji -
2022 Poster: GraphFM: Improving Large-Scale GNN Training via Feature Momentum »
Haiyang Yu · Limei Wang · Bokun Wang · Meng Liu · Tianbao Yang · Shuiwang Ji -
2022 Spotlight: GraphFM: Improving Large-Scale GNN Training via Feature Momentum »
Haiyang Yu · Limei Wang · Bokun Wang · Meng Liu · Tianbao Yang · Shuiwang Ji -
2022 Oral: Generating 3D Molecules for Target Protein Binding »
Meng Liu · Youzhi Luo · Kanji Uchino · Koji Maruhashi · Shuiwang Ji -
2022 Poster: Self-Supervised Representation Learning via Latent Graph Prediction »
Yaochen Xie · Zhao Xu · Shuiwang Ji -
2022 Spotlight: Self-Supervised Representation Learning via Latent Graph Prediction »
Yaochen Xie · Zhao Xu · Shuiwang Ji -
2021 Poster: On Explainability of Graph Neural Networks via Subgraph Explorations »
Hao Yuan · Haiyang Yu · Jie Wang · Kang Li · Shuiwang Ji -
2021 Spotlight: On Explainability of Graph Neural Networks via Subgraph Explorations »
Hao Yuan · Haiyang Yu · Jie Wang · Kang Li · Shuiwang Ji