Timezone: »
Multi-task learning (MTL) aims to improve the generalization of several related tasks by learning them jointly. As a comparison, in addition to the joint training scheme, modern meta-learning allows unseen tasks with limited labels during the test phase, in the hope of fast adaptation over them. Despite the subtle difference between MTL and meta-learning in the problem formulation, both learning paradigms share the same insight that the shared structure between existing training tasks could lead to better generalization and adaptation. In this paper, we take one important step further to understand the close connection between these two learning paradigms, through both theoretical analysis and empirical investigation. Theoretically, we first demonstrate that MTL shares the same optimization formulation with a class of gradient-based meta-learning (GBML) algorithms. We then prove that for over-parameterized neural networks with sufficient depth, the learned predictive functions of MTL and GBML are close. In particular, this result implies that the predictions given by these two models are similar over the same unseen task. Empirically, we corroborate our theoretical findings by showing that, with proper implementation, MTL is competitive against state-of-the-art GBML algorithms on a set of few-shot image classification benchmarks. Since existing GBML algorithms often involve costly second-order bi-level optimization, our first-order MTL method is an order of magnitude faster on large-scale datasets such as mini-ImageNet. We believe this work could help bridge the gap between these two learning paradigms, and provide a computationally efficient alternative to GBML that also supports fast task adaptation.
Author Information
Haoxiang Wang (University of Illinois at Urbana-Champaign)
A Ph.D. student from UIUC, working on machine learning with theoretical guarantees.
Han Zhao (University of Illinois at Urbana-Champaign)
Bo Li (UIUC)

Dr. Bo Li is an assistant professor in the Department of Computer Science at the University of Illinois at Urbana–Champaign. She is the recipient of the IJCAI Computers and Thought Award, Alfred P. Sloan Research Fellowship, AI’s 10 to Watch, NSF CAREER Award, MIT Technology Review TR-35 Award, Dean's Award for Excellence in Research, C.W. Gear Outstanding Junior Faculty Award, Intel Rising Star award, Symantec Research Labs Fellowship, Rising Star Award, Research Awards from Tech companies such as Amazon, Facebook, Intel, IBM, and eBay, and best paper awards at several top machine learning and security conferences. Her research focuses on both theoretical and practical aspects of trustworthy machine learning, which is at the intersection of machine learning, security, privacy, and game theory. She has designed several scalable frameworks for trustworthy machine learning and privacy-preserving data publishing. Her work has been featured by major publications and media outlets such as Nature, Wired, Fortune, and New York Times.
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation »
Fri. Jul 23rd 04:00 -- 06:00 AM Room Virtual
More from the Same Authors
-
2022 : Generative Gradual Domain Adaptation with Optimal Transport »
Yifei He · Haoxiang Wang · Han Zhao -
2022 : Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables »
Mengdi Xu · Peide Huang · Visak Kumar · Jielin Qiu · Chao Fang · Kuan-Hui Lee · Xuewei Qi · Henry Lam · Bo Li · Ding Zhao -
2022 : Paper 10: CausalAF: Causal Autoregressive Flow for Safety-Critical Scenes Generation »
Wenhao Ding · Haohong Lin · Bo Li · Ding Zhao · Hitesh Arora -
2023 : DiffScene: Diffusion-Based Safety-Critical Scenario Generation for Autonomous Vehicles »
Chejian Xu · Ding Zhao · Alberto Sngiovanni Vincentelli · Bo Li -
2023 : Semantically Adversarial Scene Generation with Explicit Knowledge Guidance for Autonomous Driving »
Wenhao Ding · Haohong Lin · Bo Li · Ding Zhao -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Visual-based Policy Learning with Latent Language Encoding »
Jielin Qiu · Mengdi Xu · William Han · Bo Li · Ding Zhao -
2023 : Can Brain Signals Reveal Inner Alignment with Human Languages? »
Jielin Qiu · William Han · Jiacheng Zhu · Mengdi Xu · Douglas Weber · Bo Li · Ding Zhao -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2023 Workshop: Knowledge and Logical Reasoning in the Era of Data-driven Learning »
Nezihe Merve Gürel · Bo Li · Theodoros Rekatsinas · Beliz Gunel · Alberto Sngiovanni Vincentelli · Paroma Varma -
2023 Poster: UMD: Unsupervised Model Detection for X2X Backdoor Attacks »
Zhen Xiang · Zidi Xiong · Bo Li -
2023 Poster: Interpolation for Robust Learning: Data Augmentation on Wasserstein Geodesics »
Jiacheng Zhu · Jielin Qiu · Aritra Guha · Zhuolin Yang · XuanLong Nguyen · Bo Li · Ding Zhao -
2023 Poster: Reconstructive Neuron Pruning for Backdoor Defense »
Yige Li · XIXIANG LYU · Xingjun Ma · Nodens Koren · Lingjuan Lyu · Bo Li · Yu-Gang Jiang -
2022 : Paper 15: On the Robustness of Safe Reinforcement Learning under Observational Perturbations »
Zuxin Liu · Zhepeng Cen · Huan Zhang · Jie Tan · Bo Li · Ding Zhao -
2022 Poster: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Poster: Provable Domain Generalization via Invariant-Feature Subspace Recovery »
Haoxiang Wang · Haozhe Si · Bo Li · Han Zhao -
2022 Spotlight: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Spotlight: Provable Domain Generalization via Invariant-Feature Subspace Recovery »
Haoxiang Wang · Haozhe Si · Bo Li · Han Zhao -
2022 Poster: How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection »
Mantas Mazeika · Bo Li · David Forsyth -
2022 Poster: Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization »
Xiaojun Xu · Yibo Zhang · Evelyn Ma · Hyun Ho Son · Sanmi Koyejo · Bo Li -
2022 Poster: Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond »
Haoxiang Wang · Bo Li · Han Zhao -
2022 Spotlight: How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection »
Mantas Mazeika · Bo Li · David Forsyth -
2022 Spotlight: Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization »
Xiaojun Xu · Yibo Zhang · Evelyn Ma · Hyun Ho Son · Sanmi Koyejo · Bo Li -
2022 Spotlight: Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond »
Haoxiang Wang · Bo Li · Han Zhao -
2022 Poster: Certifying Out-of-Domain Generalization for Blackbox Functions »
Maurice Weber · Linyi Li · Boxin Wang · Zhikuan Zhao · Bo Li · Ce Zhang -
2022 Poster: Double Sampling Randomized Smoothing »
Linyi Li · Jiawei Zhang · Tao Xie · Bo Li -
2022 Poster: TPC: Transformation-Specific Smoothing for Point Cloud Models »
Wenda Chu · Linyi Li · Bo Li -
2022 Spotlight: TPC: Transformation-Specific Smoothing for Point Cloud Models »
Wenda Chu · Linyi Li · Bo Li -
2022 Spotlight: Double Sampling Randomized Smoothing »
Linyi Li · Jiawei Zhang · Tao Xie · Bo Li -
2022 Spotlight: Certifying Out-of-Domain Generalization for Blackbox Functions »
Maurice Weber · Linyi Li · Boxin Wang · Zhikuan Zhao · Bo Li · Ce Zhang -
2021 : Discussion Panel #2 »
Bo Li · Nicholas Carlini · Andrzej Banburski · Kamalika Chaudhuri · Will Xiao · Cihang Xie -
2021 Workshop: A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning »
Hang Su · Yinpeng Dong · Tianyu Pang · Eric Wong · Zico Kolter · Shuo Feng · Bo Li · Henry Liu · Dan Hendrycks · Francesco Croce · Leslie Rice · Tian Tian -
2021 Poster: Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability »
Kaizhao Liang · Yibo Zhang · Boxin Wang · Zhuolin Yang · Sanmi Koyejo · Bo Li -
2021 Poster: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation »
Jiawei Zhang · Linyi Li · Huichen Li · Xiaolu Zhang · Shuang Yang · Bo Li -
2021 Poster: Understanding and Mitigating Accuracy Disparity in Regression »
Jianfeng Chi · Yuan Tian · Geoff Gordon · Han Zhao -
2021 Spotlight: Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation »
Jiawei Zhang · Linyi Li · Huichen Li · Xiaolu Zhang · Shuang Yang · Bo Li -
2021 Spotlight: Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability »
Kaizhao Liang · Yibo Zhang · Boxin Wang · Zhuolin Yang · Sanmi Koyejo · Bo Li -
2021 Spotlight: Understanding and Mitigating Accuracy Disparity in Regression »
Jianfeng Chi · Yuan Tian · Geoff Gordon · Han Zhao -
2021 Spotlight: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks »
Nezihe Merve Gürel · Xiangyu Qi · Luka Rimanic · Ce Zhang · Bo Li -
2021 Spotlight: Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks »
Nezihe Merve Gürel · Xiangyu Qi · Luka Rimanic · Ce Zhang · Bo Li -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2020 Poster: Improving Robustness of Deep-Learning-Based Image Reconstruction »
Ankit Raj · Yoram Bresler · Bo Li