Timezone: »
Poster
Differentially Private Correlation Clustering
Mark Bun · Marek Elias · Janardhan Kulkarni
Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that achieves subquadratic additive error compared to the optimal cost. In contrast, straightforward adaptations of existing non-private algorithms all lead to a trivial quadratic error. Finally, we give a lower bound showing that any pure differentially private algorithm for correlation clustering requires additive error Ω(n).
Author Information
Mark Bun (Boston University)
Marek Elias (CWI)
Janardhan Kulkarni (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Differentially Private Correlation Clustering »
Thu. Jul 22nd 01:40 -- 01:45 PM Room
More from the Same Authors
-
2021 : Multiclass versus Binary Differentially Private PAC Learning »
Satchit Sivakumar · Mark Bun · Marco Gaboradi -
2021 : When Is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning? »
Gavin Brown · Mark Bun · Vitaly Feldman · Adam Smith · Kunal Talwar -
2023 Poster: Mixing Predictions for Online Metric Algorithms »
Antonios Antoniadis · Christian Coester · Marek Elias · Adam Polak · Bertrand Simon -
2023 Poster: Paging with Succinct Predictions »
Antonios Antoniadis · Joan Boyar · Marek Elias · Lene M Favrholdt · Ruben Hoeksma · Kim S. Larsen · Adam Polak · Bertrand Simon -
2021 Poster: Accuracy, Interpretability, and Differential Privacy via Explainable Boosting »
Harsha Nori · Rich Caruana · Zhiqi Bu · Judy Hanwen Shen · Janardhan Kulkarni -
2021 Spotlight: Accuracy, Interpretability, and Differential Privacy via Explainable Boosting »
Harsha Nori · Rich Caruana · Zhiqi Bu · Judy Hanwen Shen · Janardhan Kulkarni -
2020 Poster: Differentially Private Set Union »
Sivakanth Gopi · Pankaj Gulhane · Janardhan Kulkarni · Judy Hanwen Shen · Milad Shokouhi · Sergey Yekhanin