Timezone: »
Poster
LogME: Practical Assessment of Pre-trained Models for Transfer Learning
Kaichao You · Yong Liu · Jianmin Wang · Mingsheng Long
This paper studies task adaptive pre-trained model selection, an underexplored problem of assessing pre-trained models for the target task and select best ones from the model zoo \emph{without fine-tuning}. A few pilot works addressed the problem in transferring supervised pre-trained models to classification tasks, but they cannot handle emerging unsupervised pre-trained models or regression tasks. In pursuit of a practical assessment method, we propose to estimate the maximum value of label evidence given features extracted by pre-trained models. Unlike the maximum likelihood, the maximum evidence is \emph{immune to over-fitting}, while its expensive computation can be dramatically reduced by our carefully designed algorithm. The Logarithm of Maximum Evidence (LogME) can be used to assess pre-trained models for transfer learning: a pre-trained model with a high LogME value is likely to have good transfer performance. LogME is \emph{fast, accurate, and general}, characterizing itself as the first practical method for assessing pre-trained models. Compared with brute-force fine-tuning, LogME brings at most $3000\times$ speedup in wall-clock time and requires only $1\%$ memory footprint. It outperforms prior methods by a large margin in their setting and is applicable to new settings. It is general enough for diverse pre-trained models (supervised pre-trained and unsupervised pre-trained), downstream tasks (classification and regression), and modalities (vision and language). Code is available at this repository: \href{https://github.com/thuml/LogME}{https://github.com/thuml/LogME}.
Author Information
Kaichao You (Tsinghua University)
Yong Liu (Tsinghua University)
Jianmin Wang (Tsinghua University)
Mingsheng Long (Tsinghua University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: LogME: Practical Assessment of Pre-trained Models for Transfer Learning »
Fri. Jul 23rd 12:45 -- 12:50 AM Room
More from the Same Authors
-
2023 Poster: CLIPood: Generalizing CLIP to Out-of-Distributions »
Yang Shu · Xingzhuo Guo · Jialong Wu · Ximei Wang · Jianmin Wang · Mingsheng Long -
2023 Poster: Solving High-Dimensional PDEs with Latent Spectral Models »
Haixu Wu · Tengge Hu · huakun luo · Jianmin Wang · Mingsheng Long -
2023 Poster: Estimating Heterogeneous Treatment Effects: Mutual Information Bounds and Learning Algorithms »
Xingzhuo Guo · Yuchen Zhang · Jianmin Wang · Mingsheng Long -
2022 Poster: Flowformer: Linearizing Transformers with Conservation Flows »
Haixu Wu · Jialong Wu · Jiehui Xu · Jianmin Wang · Mingsheng Long -
2022 Spotlight: Flowformer: Linearizing Transformers with Conservation Flows »
Haixu Wu · Jialong Wu · Jiehui Xu · Jianmin Wang · Mingsheng Long -
2021 Poster: Representation Subspace Distance for Domain Adaptation Regression »
Xinyang Chen · Sinan Wang · Jianmin Wang · Mingsheng Long -
2021 Spotlight: Representation Subspace Distance for Domain Adaptation Regression »
Xinyang Chen · Sinan Wang · Jianmin Wang · Mingsheng Long -
2021 Poster: Self-Tuning for Data-Efficient Deep Learning »
Ximei Wang · Jinghan Gao · Mingsheng Long · Jianmin Wang -
2021 Poster: Zoo-Tuning: Adaptive Transfer from A Zoo of Models »
Yang Shu · Zhi Kou · Zhangjie Cao · Jianmin Wang · Mingsheng Long -
2021 Spotlight: Self-Tuning for Data-Efficient Deep Learning »
Ximei Wang · Jinghan Gao · Mingsheng Long · Jianmin Wang -
2021 Spotlight: Zoo-Tuning: Adaptive Transfer from A Zoo of Models »
Yang Shu · Zhi Kou · Zhangjie Cao · Jianmin Wang · Mingsheng Long -
2020 Poster: Unsupervised Transfer Learning for Spatiotemporal Predictive Networks »
Zhiyu Yao · Yunbo Wang · Mingsheng Long · Jianmin Wang -
2019 Poster: Bridging Theory and Algorithm for Domain Adaptation »
Yuchen Zhang · Tianle Liu · Mingsheng Long · Michael Jordan -
2019 Oral: Bridging Theory and Algorithm for Domain Adaptation »
Yuchen Zhang · Tianle Liu · Mingsheng Long · Michael Jordan -
2019 Poster: Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers »
Hong Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2019 Poster: Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation »
Kaichao You · Ximei Wang · Mingsheng Long · Michael Jordan -
2019 Poster: Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation »
Xinyang Chen · Sinan Wang · Mingsheng Long · Jianmin Wang -
2019 Oral: Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation »
Kaichao You · Ximei Wang · Mingsheng Long · Michael Jordan -
2019 Oral: Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation »
Xinyang Chen · Sinan Wang · Mingsheng Long · Jianmin Wang -
2019 Oral: Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers »
Hong Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2018 Poster: PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning »
Yunbo Wang · Zhifeng Gao · Mingsheng Long · Jianmin Wang · Philip Yu -
2018 Oral: PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning »
Yunbo Wang · Zhifeng Gao · Mingsheng Long · Jianmin Wang · Philip Yu -
2017 Poster: Deep Transfer Learning with Joint Adaptation Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan -
2017 Talk: Deep Transfer Learning with Joint Adaptation Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan