Timezone: »
This paper aims to provide understandings for the effect of an over-parameterized model, e.g. a deep neural network, memorizing instance-dependent noisy labels. We first quantify the harms caused by memorizing noisy instances, and show the disparate impacts of noisy labels for sample instances with different representation frequencies. We then analyze how several popular solutions for learning with noisy labels mitigate this harm at the instance level. Our analysis reveals that existing approaches lead to disparate treatments when handling noisy instances. While higher-frequency instances often enjoy a high probability of an improvement by applying these solutions, lower-frequency instances do not. Our analysis reveals new understandings for when these approaches work, and provides theoretical justifications for previously reported empirical observations. This observation requires us to rethink the distribution of label noise across instances and calls for different treatments for instances in different regimes.
Author Information
Yang Liu (UC Santa Cruz)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Understanding Instance-Level Label Noise: Disparate Impacts and Treatments »
Wed. Jul 21st 04:00 -- 06:00 PM Room
More from the Same Authors
-
2020 : Contributed Talk: Incentives for Federated Learning: a Hypothesis Elicitation Approach »
Yang Liu · Jiaheng Wei -
2020 : Contributed Talk: Linear Models are Robust Optimal Under Strategic Behavior »
Wei Tang · Chien-Ju Ho · Yang Liu -
2021 : Linear Classifiers that Encourage Constructive Adaptation »
Yatong Chen · Jialu Wang · Yang Liu -
2021 : When Optimizing f-divergence is Robust with Label Noise »
Jiaheng Wei · Yang Liu -
2022 : Adaptive Data Debiasing Through Bounded Exploration »
Yifan Yang · Yang Liu · Parinaz Naghizadeh -
2023 Poster: Identifiability of Label Noise Transition Matrix »
Yang Liu · Hao Cheng · Kun Zhang -
2023 Poster: Model Transferability with Responsive Decision Subjects »
Yatong Chen · Zeyu Tang · Kun Zhang · Yang Liu -
2023 Poster: Weak Proxies are Sufficient and Preferrable for Fairness with Missing Sensitive Attributes »
Zhaowei Zhu · Yuanshun Yao · Jiankai Sun · Hang Li · Yang Liu -
2023 Workshop: DMLR Workshop: Data-centric Machine Learning Research »
Ce Zhang · Praveen Paritosh · Newsha Ardalani · Nezihe Merve Gürel · William Gaviria Rojas · Yang Liu · Rotem Dror · Manil Maskey · Lilith Bat-Leah · Tzu-Sheng Kuo · Luis Oala · Max Bartolo · Ludwig Schmidt · Alicia Parrish · Daniel Kondermann · Najoung Kim -
2022 : Model Transferability With Responsive Decision Subjects »
Yang Liu · Yatong Chen · Zeyu Tang · Kun Zhang -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Detecting Corrupted Labels Without Training a Model to Predict »
Zhaowei Zhu · Zihao Dong · Yang Liu -
2022 Poster: Understanding Instance-Level Impact of Fairness Constraints »
Jialu Wang · Xin Eric Wang · Yang Liu -
2022 Spotlight: Understanding Instance-Level Impact of Fairness Constraints »
Jialu Wang · Xin Eric Wang · Yang Liu -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Metric-Fair Classifier Derandomization »
Jimmy Wu · Yatong Chen · Yang Liu -
2022 Poster: Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features »
Zhaowei Zhu · Jialu Wang · Yang Liu -
2022 Spotlight: Detecting Corrupted Labels Without Training a Model to Predict »
Zhaowei Zhu · Zihao Dong · Yang Liu -
2022 Spotlight: Metric-Fair Classifier Derandomization »
Jimmy Wu · Yatong Chen · Yang Liu -
2022 Spotlight: Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features »
Zhaowei Zhu · Jialu Wang · Yang Liu -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 Poster: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels »
Zhaowei Zhu · Yiwen Song · Yang Liu -
2021 Spotlight: Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels »
Zhaowei Zhu · Yiwen Song · Yang Liu -
2020 Workshop: Incentives in Machine Learning »
Boi Faltings · Yang Liu · David Parkes · Goran Radanovic · Dawn Song -
2020 Poster: Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates »
Yang Liu · Hongyi Guo -
2019 Poster: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes -
2019 Oral: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes