Timezone: »
Poster
Relative Deviation Margin Bounds
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh
We present a series of new and more favorable margin-based learning guarantees that depend on the empirical margin loss of a predictor. e give two types of learning bounds, in terms of either the Rademacher complexity or the empirical $\ell_\infty$-covering number of the hypothesis set used, both distribution-dependent and valid for general families. Furthermore, using our relative deviation margin bounds, we derive distribution-dependent generalization bounds for unbounded loss functions under the assumption of a finite moment. We also briefly highlight several applications of these bounds and discuss their connection with existing results.
Author Information
Corinna Cortes (Google Research)
Mehryar Mohri (Google Research and Courant Institute of Mathematical Sciences)
Ananda Theertha Suresh (Google Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Relative Deviation Margin Bounds »
Thu. Jul 22nd 01:40 -- 01:45 AM Room
More from the Same Authors
-
2021 : Remember What You Want to Forget: Algorithms for Machine Unlearning »
Ayush Sekhari · Ayush Sekhari · Jayadev Acharya · Gautam Kamath · Ananda Theertha Suresh -
2021 : On the Renyi Differential Privacy of the Shuffle Model »
Antonious Girgis · Deepesh Data · Suhas Diggavi · Ananda Theertha Suresh · Peter Kairouz -
2021 : Learning with User-Level Privacy »
Daniel A Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh -
2023 Poster: Subset-Based Instance Optimality in Private Estimation »
Travis Dick · Alex Kulesza · Ziteng Sun · Ananda Suresh -
2023 Poster: Algorithms for bounding contribution for histogram estimation under user-level privacy »
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser -
2023 Poster: $H$-Consistency Bounds for Pairwise Misranking Loss Surrogates »
Anqi Mao · Mehryar Mohri · Yutao Zhong -
2023 Poster: Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 Poster: Reinforcement Learning Can Be More Efficient with Multiple Rewards »
Christoph Dann · Yishay Mansour · Mehryar Mohri -
2023 Poster: Cross-Entropy Loss Functions: Theoretical Analysis and Applications »
Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation »
Chris Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Spotlight: Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation »
Chris Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2022 Poster: H-Consistency Bounds for Surrogate Loss Minimizers »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Poster: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2022 Oral: H-Consistency Bounds for Surrogate Loss Minimizers »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Spotlight: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2021 Spotlight: A Discriminative Technique for Multiple-Source Adaptation »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang -
2021 Poster: A Discriminative Technique for Multiple-Source Adaptation »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang -
2020 Poster: Adaptive Region-Based Active Learning »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Ningshan Zhang -
2020 Poster: Online Learning with Dependent Stochastic Feedback Graphs »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Ningshan Zhang -
2020 Poster: SCAFFOLD: Stochastic Controlled Averaging for Federated Learning »
Sai Praneeth Reddy Karimireddy · Satyen Kale · Mehryar Mohri · Sashank Jakkam Reddi · Sebastian Stich · Ananda Theertha Suresh -
2020 Poster: Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2020 Poster: FedBoost: A Communication-Efficient Algorithm for Federated Learning »
Jenny Hamer · Mehryar Mohri · Ananda Theertha Suresh -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Agnostic Federated Learning »
Mehryar Mohri · Gary Sivek · Ananda Suresh -
2019 Poster: Online Learning with Sleeping Experts and Feedback Graphs »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2019 Oral: Agnostic Federated Learning »
Mehryar Mohri · Gary Sivek · Ananda Suresh -
2019 Oral: Online Learning with Sleeping Experts and Feedback Graphs »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2019 Poster: Active Learning with Disagreement Graphs »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri · Ningshan Zhang · Claudio Gentile -
2019 Oral: Active Learning with Disagreement Graphs »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri · Ningshan Zhang · Claudio Gentile -
2018 Poster: Online Learning with Abstention »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2018 Oral: Online Learning with Abstention »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2017 Workshop: Picky Learners: Choosing Alternative Ways to Process Data. »
Corinna Cortes · Kamalika Chaudhuri · Giulia DeSalvo · Ningshan Zhang · Chicheng Zhang -
2017 Poster: Distributed Mean Estimation with Limited Communication »
Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2017 Poster: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh -
2017 Poster: Maximum Selection and Ranking under Noisy Comparisons »
Moein Falahatgar · Alon Orlitsky · Venkatadheeraj Pichapati · Ananda Theertha Suresh -
2017 Talk: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh -
2017 Talk: Distributed Mean Estimation with Limited Communication »
Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2017 Talk: Maximum Selection and Ranking under Noisy Comparisons »
Moein Falahatgar · Alon Orlitsky · Venkatadheeraj Pichapati · Ananda Theertha Suresh -
2017 Poster: AdaNet: Adaptive Structural Learning of Artificial Neural Networks »
Corinna Cortes · Xavi Gonzalvo · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang -
2017 Talk: AdaNet: Adaptive Structural Learning of Artificial Neural Networks »
Corinna Cortes · Xavi Gonzalvo · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang