Timezone: »
We study the problem of learning conditional average treatment effects (CATE) from high-dimensional, observational data with unobserved confounders. Unobserved confounders introduce ignorance---a level of unidentifiability---about an individual's response to treatment by inducing bias in CATE estimates. We present a new parametric interval estimator suited for high-dimensional data, that estimates a range of possible CATE values when given a predefined bound on the level of hidden confounding. Further, previous interval estimators do not account for ignorance about the CATE associated with samples that may be underrepresented in the original study, or samples that violate the overlap assumption. Our interval estimator also incorporates model uncertainty so that practitioners can be made aware of such out-of-distribution data. We prove that our estimator converges to tight bounds on CATE when there may be unobserved confounding and assess it using semi-synthetic, high-dimensional datasets.
Author Information
Andrew Jesson (University of Oxford)
Sören Mindermann (University of Oxford)
I'm a research intern at the Center for Human-Compatible AI (CHAI) group at UC Berkeley, working on active Inverse Reward Design. Previously I worked in Oxford on a theoretical paper on inverse RL for bounded agents and did my MSc with Peter Dayan at UCL.
Yarin Gal (University of Oxford)
Uri Shalit (Technion)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Thu. Jul 22nd 04:00 -- 06:00 AM Room
More from the Same Authors
-
2021 : A Practical Notation for Information-Theoretic Quantities between Outcomes and Random Variables »
Andreas Kirsch · Yarin Gal -
2021 : GoldiProx Selection: Faster training by learning what is learnable, not yet learned, and worth learning »
Sören Mindermann · Muhammed Razzak · Adrien Morisot · Aidan Gomez · Sebastian Farquhar · Jan Brauner · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2021 : Batch Active Learning with Stochastic Acquisition Functions »
Andreas Kirsch · Sebastian Farquhar · Yarin Gal -
2021 : On Low Rank Training of Deep Neural Networks »
Siddhartha Kamalakara · Acyr Locatelli · Bharat Venkitesh · Jimmy Ba · Yarin Gal · Aidan Gomez -
2021 : Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2021 : A Simple Baseline for Batch Active Learning with Stochastic Acquisition Functions »
Andreas Kirsch · Sebastian Farquhar · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2023 Workshop: The Second Workshop on Spurious Correlations, Invariance and Stability »
Yoav Wald · Claudia Shi · Aahlad Puli · Amir Feder · Limor Gultchin · Mark Goldstein · Maggie Makar · Victor Veitch · Uri Shalit -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 Workshop: Spurious correlations, Invariance, and Stability (SCIS) »
Aahlad Puli · Maggie Makar · Victor Veitch · Yoav Wald · Mark Goldstein · Limor Gultchin · Angela Zhou · Uri Shalit · Suchi Saria -
2022 Poster: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Poster: Continual Learning via Sequential Function-Space Variational Inference »
Tim G. J Rudner · Freddie Bickford Smith · QIXUAN FENG · Yee-Whye Teh · Yarin Gal -
2022 Poster: Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt »
Sören Mindermann · Jan Brauner · Muhammed Razzak · Mrinank Sharma · Andreas Kirsch · Winnie Xu · Benedikt Höltgen · Aidan Gomez · Adrien Morisot · Sebastian Farquhar · Yarin Gal -
2022 Spotlight: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Spotlight: Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt »
Sören Mindermann · Jan Brauner · Muhammed Razzak · Mrinank Sharma · Andreas Kirsch · Winnie Xu · Benedikt Höltgen · Aidan Gomez · Adrien Morisot · Sebastian Farquhar · Yarin Gal -
2022 Spotlight: Continual Learning via Sequential Function-Space Variational Inference »
Tim G. J Rudner · Freddie Bickford Smith · QIXUAN FENG · Yee-Whye Teh · Yarin Gal -
2022 Poster: Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval »
Pascal Notin · Mafalda Dias · Jonathan Frazer · Javier Marchena Hurtado · Aidan Gomez · Debora Marks · Yarin Gal -
2022 Spotlight: Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval »
Pascal Notin · Mafalda Dias · Jonathan Frazer · Javier Marchena Hurtado · Aidan Gomez · Debora Marks · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Yarin Gal · Tom Rainforth · Andreas Kirsch -
2021 : Invited Talk #1 »
Yarin Gal -
2021 : Live Panel Discussion »
Thomas Dietterich · Chelsea Finn · Kamalika Chaudhuri · Yarin Gal · Uri Shalit -
2021 Workshop: The Neglected Assumptions In Causal Inference »
Niki Kilbertus · Lily Hu · Laura Balzer · Uri Shalit · Alexander D'Amour · Razieh Nabi -
2021 Poster: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Poster: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Spotlight: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Spotlight: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Poster: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Spotlight: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Poster: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2021 Oral: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2020 Poster: Robust Learning with the Hilbert-Schmidt Independence Criterion »
Daniel Greenfeld · Uri Shalit -
2020 Poster: Inter-domain Deep Gaussian Processes »
Tim G. J. Rudner · Dino Sejdinovic · Yarin Gal -
2020 Poster: Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts? »
Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal -
2020 Poster: Invariant Causal Prediction for Block MDPs »
Amy Zhang · Clare Lyle · Shagun Sodhani · Angelos Filos · Marta Kwiatkowska · Joelle Pineau · Yarin Gal · Doina Precup -
2020 Poster: Uncertainty Estimation Using a Single Deep Deterministic Neural Network »
Joost van Amersfoort · Lewis Smith · Yee-Whye Teh · Yarin Gal -
2018 Poster: Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam »
Mohammad Emtiyaz Khan · Didrik Nielsen · Voot Tangkaratt · Wu Lin · Yarin Gal · Akash Srivastava -
2018 Oral: Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam »
Mohammad Emtiyaz Khan · Didrik Nielsen · Voot Tangkaratt · Wu Lin · Yarin Gal · Akash Srivastava