Timezone: »
Humans are accustomed to environments that contain both regularities and exceptions. For example, at most gas stations, one pays prior to pumping, but the occasional rural station does not accept payment in advance. Likewise, deep neural networks can generalize across instances that share common patterns or structures, yet have the capacity to memorize rare or irregular forms. We analyze how individual instances are treated by a model via a consistency score. The score characterizes the expected accuracy for a held-out instance given training sets of varying size sampled from the data distribution. We obtain empirical estimates of this score for individual instances in multiple data sets, and we show that the score identifies out-of-distribution and mislabeled examples at one end of the continuum and strongly regular examples at the other end. We identify computationally inexpensive proxies to the consistency score using statistics collected during training. We apply the score toward understanding the dynamics of representation learning and to filter outliers during training.
Author Information
Ziheng Jiang (University of Washington)
Chiyuan Zhang (Google Research)
Kunal Talwar (Apple)
Michael Mozer (Google Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Characterizing Structural Regularities of Labeled Data in Overparameterized Models »
Wed. Jul 21st 12:00 -- 12:20 AM Room
More from the Same Authors
-
2021 : Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 : Randomized Response with Prior and Applications to Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 : Differential Secrecy for Distributed Data and Applications to Robust Differentially Secure Vector Summation »
Kunal Talwar -
2021 : Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling »
Vitaly Feldman · Audra McMillan · Kunal Talwar -
2021 : Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2021 : When Is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning? »
Gavin Brown · Mark Bun · Vitaly Feldman · Adam Smith · Kunal Talwar -
2021 : A Practitioners Guide to Differentially Private Convex Optimization »
Ryan McKenna · Hristo Paskov · Kunal Talwar -
2022 : Learning to induce causal structure »
Rosemary Nan Ke · Silvia Chiappa · Jane Wang · Jorg Bornschein · Anirudh Goyal · Melanie Rey · Matthew Botvinick · Theophane Weber · Michael Mozer · Danilo J. Rezende -
2023 : Counterfactual Memorization in Neural Language Models »
Chiyuan Zhang · Daphne Ippolito · Katherine Lee · Matthew Jagielski · Florian Tramer · Nicholas Carlini -
2023 : On the Reproducibility of Data Valuation under Learning Stochasticity »
Jiachen Wang · Feiyang Kang · Chiyuan Zhang · Ruoxi Jia · Prateek Mittal -
2023 : Differentially Private Heavy Hitters using Federated Analytics »
Karan Chadha · Junye Chen · John Duchi · Vitaly Feldman · Hanieh Hashemi · Omid Javidbakht · Audra McMillan · Kunal Talwar -
2023 Poster: Can Neural Network Memorization Be Localized? »
Pratyush Maini · Michael Mozer · Hanie Sedghi · Zachary Lipton · Zico Kolter · Chiyuan Zhang -
2023 Poster: Discrete Key-Value Bottleneck »
Frederik Träuble · Anirudh Goyal · Nasim Rahaman · Michael Mozer · Kenji Kawaguchi · Yoshua Bengio · Bernhard Schölkopf -
2023 Poster: Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2023 Poster: On User-Level Private Convex Optimization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi · Raghu Meka · Chiyuan Zhang -
2022 : Low-Communication Algorithms for Private Federated Data Analysis »
Kunal Talwar -
2022 Workshop: Knowledge Retrieval and Language Models »
Maithra Raghu · Urvashi Khandelwal · Chiyuan Zhang · Matei Zaharia · Alexander Rush -
2022 Poster: Optimal Algorithms for Mean Estimation under Local Differential Privacy »
Hilal Asi · Vitaly Feldman · Kunal Talwar -
2022 Oral: Optimal Algorithms for Mean Estimation under Local Differential Privacy »
Hilal Asi · Vitaly Feldman · Kunal Talwar -
2022 Poster: Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning »
Utku Evci · Vincent Dumoulin · Hugo Larochelle · Michael Mozer -
2022 Oral: Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning »
Utku Evci · Vincent Dumoulin · Hugo Larochelle · Michael Mozer -
2021 Poster: Private Adaptive Gradient Methods for Convex Optimization »
Hilal Asi · John Duchi · Alireza Fallah · Omid Javidbakht · Kunal Talwar -
2021 Poster: Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 Poster: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Spotlight: Private Adaptive Gradient Methods for Convex Optimization »
Hilal Asi · John Duchi · Alireza Fallah · Omid Javidbakht · Kunal Talwar -
2021 Oral: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Spotlight: Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 Poster: Understanding Invariance via Feedforward Inversion of Discriminatively Trained Classifiers »
Piotr Teterwak · Chiyuan Zhang · Dilip Krishnan · Michael Mozer -
2021 Spotlight: Understanding Invariance via Feedforward Inversion of Discriminatively Trained Classifiers »
Piotr Teterwak · Chiyuan Zhang · Dilip Krishnan · Michael Mozer -
2020 Poster: Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules »
Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio -
2019 Poster: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Oral: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2018 Poster: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Oral: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick