Timezone: »
Selective labels are a common feature of high-stakes decision-making applications, referring to the lack of observed outcomes under one of the possible decisions. This paper studies the learning of decision policies in the face of selective labels, in an online setting that balances learning costs against future utility. In the homogeneous case in which individuals' features are disregarded, the optimal decision policy is shown to be a threshold policy. The threshold becomes more stringent as more labels are collected; the rate at which this occurs is characterized. In the case of features drawn from a finite domain, the optimal policy consists of multiple homogeneous policies in parallel. For the general infinite-domain case, the homogeneous policy is extended by using a probabilistic classifier and bootstrapping to provide its inputs. In experiments on synthetic and real data, the proposed policies achieve consistently superior utility with no parameter tuning in the finite-domain case and lower parameter sensitivity in the general case.
Author Information
Dennis Wei (IBM Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Decision-Making Under Selective Labels: Optimal Finite-Domain Policies and Beyond »
Tue. Jul 20th 04:00 -- 06:00 PM Room Virtual
More from the Same Authors
-
2020 Workshop: 5th ICML Workshop on Human Interpretability in Machine Learning (WHI) »
Adrian Weller · Alice Xiang · Amit Dhurandhar · Been Kim · Dennis Wei · Kush Varshney · Umang Bhatt -
2020 Poster: Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing »
Sanghamitra Dutta · Dennis Wei · Hazar Yueksel · Pin-Yu Chen · Sijia Liu · Kush Varshney -
2019 Poster: Generalized Linear Rule Models »
Dennis Wei · Sanjeeb Dash · Tian Gao · Oktay Gunluk -
2019 Oral: Generalized Linear Rule Models »
Dennis Wei · Sanjeeb Dash · Tian Gao · Oktay Gunluk -
2018 Poster: Parallel Bayesian Network Structure Learning »
Tian Gao · Dennis Wei -
2018 Oral: Parallel Bayesian Network Structure Learning »
Tian Gao · Dennis Wei