Timezone: »
We prove that the alpha-expansion algorithm for MAP inference always returns a globally optimal assignment for Markov Random Fields with Potts pairwise potentials, with a catch: the returned assignment is only guaranteed to be optimal for an instance within a small perturbation of the original problem instance. In other words, all local minima with respect to expansion moves are global minima to slightly perturbed versions of the problem. On "real-world" instances, MAP assignments of small perturbations of the problem should be very similar to the MAP assignment(s) of the original problem instance. We design an algorithm that can certify whether this is the case in practice. On several MAP inference problem instances from computer vision, this algorithm certifies that MAP solutions to all of these perturbations are very close to solutions of the original instance. These results taken together give a cohesive explanation for the good performance of "graph cuts" algorithms in practice. Every local expansion minimum is a global minimum in a small perturbation of the problem, and all of these global minima are close to the original solution.
Author Information
Hunter Lang (MIT)
David Sontag (Massachusetts Institute of Technology)
Aravindan Vijayaraghavan (Northwestern University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Graph Cuts Always Find a Global Optimum for Potts Models (With a Catch) »
Fri. Jul 23rd 04:00 -- 06:00 AM Room
More from the Same Authors
-
2022 : Evaluating Robustness to Dataset Shift via Parametric Robustness Sets »
Michael Oberst · Nikolaj Thams · David Sontag -
2022 : Evaluating Robustness to Dataset Shift via Parametric Robustness Sets »
Nikolaj Thams · Michael Oberst · David Sontag -
2022 Poster: Sample Efficient Learning of Predictors that Complement Humans »
Mohammad-Amin Charusaie · Hussein Mozannar · David Sontag · Samira Samadi -
2022 Poster: Co-training Improves Prompt-based Learning for Large Language Models »
Hunter Lang · Monica Agrawal · Yoon Kim · David Sontag -
2022 Spotlight: Sample Efficient Learning of Predictors that Complement Humans »
Mohammad-Amin Charusaie · Hussein Mozannar · David Sontag · Samira Samadi -
2022 Spotlight: Co-training Improves Prompt-based Learning for Large Language Models »
Hunter Lang · Monica Agrawal · Yoon Kim · David Sontag -
2021 Poster: Neural Pharmacodynamic State Space Modeling »
Zeshan Hussain · Rahul G. Krishnan · David Sontag -
2021 Poster: Regularizing towards Causal Invariance: Linear Models with Proxies »
Michael Oberst · Nikolaj Thams · Jonas Peters · David Sontag -
2021 Spotlight: Regularizing towards Causal Invariance: Linear Models with Proxies »
Michael Oberst · Nikolaj Thams · Jonas Peters · David Sontag -
2021 Spotlight: Neural Pharmacodynamic State Space Modeling »
Zeshan Hussain · Rahul G. Krishnan · David Sontag -
2020 Poster: Estimation of Bounds on Potential Outcomes For Decision Making »
Maggie Makar · Fredrik Johansson · John Guttag · David Sontag -
2020 Poster: Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models »
Rares-Darius Buhai · Yoni Halpern · Yoon Kim · Andrej Risteski · David Sontag -
2020 Poster: Consistent Estimators for Learning to Defer to an Expert »
Hussein Mozannar · David Sontag -
2019 Poster: Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models »
Michael Oberst · David Sontag -
2019 Oral: Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models »
Michael Oberst · David Sontag -
2018 Poster: Semi-Amortized Variational Autoencoders »
Yoon Kim · Sam Wiseman · Andrew Miller · David Sontag · Alexander Rush -
2018 Oral: Semi-Amortized Variational Autoencoders »
Yoon Kim · Sam Wiseman · Andrew Miller · David Sontag · Alexander Rush -
2018 Poster: Clustering Semi-Random Mixtures of Gaussians »
Aravindan Vijayaraghavan · Pranjal Awasthi -
2018 Oral: Clustering Semi-Random Mixtures of Gaussians »
Aravindan Vijayaraghavan · Pranjal Awasthi -
2017 Poster: Estimating individual treatment effect: generalization bounds and algorithms »
Uri Shalit · Fredrik D Johansson · David Sontag -
2017 Talk: Estimating individual treatment effect: generalization bounds and algorithms »
Uri Shalit · Fredrik D Johansson · David Sontag -
2017 Poster: Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation »
Yacine Jernite · Anna Choromanska · David Sontag -
2017 Talk: Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation »
Yacine Jernite · Anna Choromanska · David Sontag