Timezone: »
Spotlight
Learning from Biased Data: A Semi-Parametric Approach
Patrice Bertail · Stephan Clémençon · Yannick Guyonvarch · Nathan NOIRY
We consider risk minimization problems where the (source) distribution $P_S$ of the training observations $Z_1, \ldots, Z_n$ differs from the (target) distribution $P_T$ involved in the risk that one seeks to minimize. Under the natural assumption that $P_S$ dominates $P_T$, \textit{i.e.} $P_T< \! \!
Author Information
Patrice Bertail (Université Paris Nanterre)
Stephan Clémençon (Télécom Paris)
Yannick Guyonvarch (Télécom Paris)
Nathan NOIRY (Telecom Paris)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Learning from Biased Data: A Semi-Parametric Approach »
Wed. Jul 21st 04:00 -- 06:00 PM Room
More from the Same Authors
-
2022 Poster: Mitigating Gender Bias in Face Recognition using the von Mises-Fisher Mixture Model »
Jean-Rémy Conti · Nathan NOIRY · Stephan Clemencon · Vincent Despiegel · Stéphane Gentric -
2022 Spotlight: Mitigating Gender Bias in Face Recognition using the von Mises-Fisher Mixture Model »
Jean-Rémy Conti · Nathan NOIRY · Stephan Clemencon · Vincent Despiegel · Stéphane Gentric -
2021 Poster: Generalization Bounds in the Presence of Outliers: a Median-of-Means Study »
Pierre Laforgue · Guillaume Staerman · Stephan Clémençon -
2021 Spotlight: Generalization Bounds in the Presence of Outliers: a Median-of-Means Study »
Pierre Laforgue · Guillaume Staerman · Stephan Clémençon -
2019 Poster: On Medians of (Randomized) Pairwise Means »
Stephan Clemencon · Pierre Laforgue · Patrice Bertail -
2019 Oral: On Medians of (Randomized) Pairwise Means »
Stephan Clemencon · Pierre Laforgue · Patrice Bertail