Timezone: »
With the widespread deployment of large-scale prediction systems in high-stakes domains, e.g., face recognition, criminal justice, etc., disparity on prediction accuracy between different demographic subgroups has called for fundamental understanding on the source of such disparity and algorithmic intervention to mitigate it. In this paper, we study the accuracy disparity problem in regression. To begin with, we first propose an error decomposition theorem, which decomposes the accuracy disparity into the distance between marginal label distributions and the distance between conditional representations, to help explain why such accuracy disparity appears in practice. Motivated by this error decomposition and the general idea of distribution alignment with statistical distances, we then propose an algorithm to reduce this disparity, and analyze its game-theoretic optima of the proposed objective functions. To corroborate our theoretical findings, we also conduct experiments on five benchmark datasets. The experimental results suggest that our proposed algorithms can effectively mitigate accuracy disparity while maintaining the predictive power of the regression models.
Author Information
Jianfeng Chi (University of Virginia)
Yuan Tian (University of Virginia)
Geoff Gordon (Carnegie Mellon University)
Han Zhao (University of Illinois at Urbana-Champaign)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Understanding and Mitigating Accuracy Disparity in Regression »
Fri. Jul 23rd 04:00 -- 06:00 AM Room Virtual
More from the Same Authors
-
2022 : Generative Gradual Domain Adaptation with Optimal Transport »
Yifei He · Haoxiang Wang · Han Zhao -
2022 Poster: Provable Domain Generalization via Invariant-Feature Subspace Recovery »
Haoxiang Wang · Haozhe Si · Bo Li · Han Zhao -
2022 Spotlight: Provable Domain Generalization via Invariant-Feature Subspace Recovery »
Haoxiang Wang · Haozhe Si · Bo Li · Han Zhao -
2022 Poster: Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond »
Haoxiang Wang · Bo Li · Han Zhao -
2022 Spotlight: Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond »
Haoxiang Wang · Bo Li · Han Zhao -
2021 Poster: Decomposed Mutual Information Estimation for Contrastive Representation Learning »
Alessandro Sordoni · Nouha Dziri · Hannes Schulz · Geoff Gordon · Philip Bachman · Remi Tachet des Combes -
2021 Poster: Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation »
Haoxiang Wang · Han Zhao · Bo Li -
2021 Spotlight: Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation »
Haoxiang Wang · Han Zhao · Bo Li -
2021 Spotlight: Decomposed Mutual Information Estimation for Contrastive Representation Learning »
Alessandro Sordoni · Nouha Dziri · Hannes Schulz · Geoff Gordon · Philip Bachman · Remi Tachet des Combes -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2019 Poster: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon -
2019 Oral: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon -
2018 Poster: Recurrent Predictive State Policy Networks »
Ahmed Hefny · Zita Marinho · Wen Sun · Siddhartha Srinivasa · Geoff Gordon -
2018 Oral: Recurrent Predictive State Policy Networks »
Ahmed Hefny · Zita Marinho · Wen Sun · Siddhartha Srinivasa · Geoff Gordon -
2017 Poster: Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction »
Wen Sun · Arun Venkatraman · Geoff Gordon · Byron Boots · Drew Bagnell -
2017 Talk: Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction »
Wen Sun · Arun Venkatraman · Geoff Gordon · Byron Boots · Drew Bagnell