Timezone: »
Poster
Active Covering
Heinrich Jiang · Afshin Rostamizadeh
We analyze the problem of active covering, where the learner is given an unlabeled dataset and can sequentially label query examples. The objective is to label query all of the positive examples in the fewest number of total label queries. We show under standard non-parametric assumptions that a classical support estimator can be repurposed as an offline algorithm attaining an excess query cost of $\widetilde{\Theta}(n^{D/(D+1)})$ compared to the optimal learner, where $n$ is the number of datapoints and $D$ is the dimension. We then provide a simple active learning method that attains an improved excess query cost of $\widetilde{O}(n^{(D-1)/D})$. Furthermore, the proposed algorithms only require access to the positive labeled examples, which in certain settings provides additional computational and privacy benefits. Finally, we show that the active learning method consistently outperforms offline methods as well as a variety of baselines on a wide range of benchmark image-based datasets.
Author Information
Heinrich Jiang (Google Research)
Afshin Rostamizadeh (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Active Covering »
Thu. Jul 22nd 01:35 -- 01:40 PM Room
More from the Same Authors
-
2021 Poster: Locally Adaptive Label Smoothing Improves Predictive Churn »
Dara Bahri · Heinrich Jiang -
2021 Spotlight: Locally Adaptive Label Smoothing Improves Predictive Churn »
Dara Bahri · Heinrich Jiang -
2020 Poster: Deep k-NN for Noisy Labels »
Dara Bahri · Heinrich Jiang · Maya Gupta -
2019 Poster: Categorical Feature Compression via Submodular Optimization »
Mohammad Hossein Bateni · Lin Chen · Hossein Esfandiari · Thomas Fu · Vahab Mirrokni · Afshin Rostamizadeh -
2019 Oral: Categorical Feature Compression via Submodular Optimization »
Mohammad Hossein Bateni · Lin Chen · Hossein Esfandiari · Thomas Fu · Vahab Mirrokni · Afshin Rostamizadeh -
2019 Poster: Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi · Felix Xinnan Yu · Daniel Holtmann-Rice · Dmitry Storcheus · Afshin Rostamizadeh · Sanjiv Kumar -
2019 Oral: Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi · Felix Xinnan Yu · Daniel Holtmann-Rice · Dmitry Storcheus · Afshin Rostamizadeh · Sanjiv Kumar -
2019 Poster: Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints »
Andrew Cotter · Maya Gupta · Heinrich Jiang · Nati Srebro · Karthik Sridharan · Serena Wang · Blake Woodworth · Seungil You -
2019 Poster: Shape Constraints for Set Functions »
Andrew Cotter · Maya Gupta · Heinrich Jiang · Erez Louidor · James Muller · Taman Narayan · Serena Wang · Tao Zhu -
2019 Oral: Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints »
Andrew Cotter · Maya Gupta · Heinrich Jiang · Nati Srebro · Karthik Sridharan · Serena Wang · Blake Woodworth · Seungil You -
2019 Oral: Shape Constraints for Set Functions »
Andrew Cotter · Maya Gupta · Heinrich Jiang · Erez Louidor · James Muller · Taman Narayan · Serena Wang · Tao Zhu