Timezone: »
Lightning Talks Session 2
Jichan Chung · Saurav Prakash · Mikhail Khodak · Ravi Rahman · Vaikkunth Mugunthan · xinwei zhang · Hossein Hosseini
Sat Jul 18 12:50 PM -- 01:15 PM (PDT) @
- Avishek Ghosh, Jichan Chung, Dong Yin and Kannan Ramchandran. An Efficient Framework for Clustered Federated Learning
- Saurav Prakash, Sagar Dhakal, Mustafa Akdeniz, Amir Salman Avestimehr and Nageen Himayat. Coded Computing for Federated Learning at the Edge
- Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani and Ali Jadbabaie. Robust Federated Learning: The Case of Affine Distribution Shifts
- Mikhail Khodak, Tian Li, Liam Li, Maria-Florina Balcan, Virginia Smith and Ameet Talwalkar. Weight-Sharing for Hyperparameter Optimization in Federated Learning
- Vaikkunth Mugunthan, Ravi Rahman and Lalana Kagal. BlockFLow: An Accountable and Privacy-Preserving Solution for Federated Learning
- Vaikkunth Mugunthan, Anton Peraire-Bueno and Lalana Kagal. PrivacyFL: A simulator for privacy-preserving and secure federated learning
- Hossein Hosseini, Sungrack Yun, Hyunsin Park, Christos Louizos, Joseph Soriaga and Max Welling. Federated Learning of User Authentication Models
- Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin and Yang Liu. FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Author Information
Jichan Chung (U.C.Berkeley)
Saurav Prakash (USC)
Saurav Prakash (IEEE Graduate Student Member) received the Bachelor of Technology degree in Electrical Engineering from the Indian Institute of Technology (IIT), Kanpur, India, in 2016. He is currently pursuing the Ph.D. degree in Electrical and Computer Engineering with the University of Southern California (USC), Los Angeles. He was a finalist in the Qualcomm Innovation Fellowship program in 2019. His research interests include information theory and data analytics with applications in large-scale machine learning and edge computing. He received the USC Annenberg Graduate Fellowship in 2016 and was one of the Viterbi-India fellows in Summer 2015.
Mikhail Khodak (CMU)
Ravi Rahman (MIT)
Vaikkunth Mugunthan (Massachusetts Institute of Technology)
xinwei zhang (university of Minnesota)
Hossein Hosseini (Qualcomm AI Research)
More from the Same Authors
-
2021 : Unsupervised Information Obfuscation for Split Inference of Neural Networks »
Mohammad Samragh · Hossein Hosseini · Aleksei Triastcyn · Kambiz Azarian · Joseph B Soriaga · Farinaz Koushanfar -
2021 : Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang -
2021 : Understanding Clipped FedAvg: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Steven Wu · Mingyi Hong -
2022 : Meta-Learning Adversarial Bandits »
Nina Balcan · Keegan Harris · Mikhail Khodak · Steven Wu -
2023 : Learning-augmented private algorithms for multiple quantile release »
Mikhail Khodak · Kareem Amin · Travis Dick · Sergei Vassilvitskii -
2023 Oral: Cross-Modal Fine-Tuning: Align then Refine »
Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar -
2023 Poster: Cross-Modal Fine-Tuning: Align then Refine »
Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar -
2023 Poster: Learning-augmented private algorithms for multiple quantile release »
Mikhail Khodak · Kareem Amin · Travis Dick · Sergei Vassilvitskii -
2023 Poster: FedAvg Converges to Zero Training Loss Linearly for Overparameterized Multi-Layer Neural Networks »
Bingqing Song · Prashant Khanduri · xinwei zhang · Jinfeng Yi · Mingyi Hong -
2022 Poster: A Stochastic Multi-Rate Control Framework For Modeling Distributed Optimization Algorithms »
xinwei zhang · Mingyi Hong · Sairaj Dhople · Nicola Elia -
2022 Spotlight: A Stochastic Multi-Rate Control Framework For Modeling Distributed Optimization Algorithms »
xinwei zhang · Mingyi Hong · Sairaj Dhople · Nicola Elia -
2022 Poster: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2021 : Contributed Talk #4 »
Mohammad Samragh · Hossein Hosseini · Kambiz Azarian · Farinaz Koushanfar -
2021 Poster: Federated Learning of User Verification Models Without Sharing Embeddings »
Hossein Hosseini · Hyunsin Park · Sungrack Yun · Christos Louizos · Joseph B Soriaga · Max Welling -
2021 Spotlight: Federated Learning of User Verification Models Without Sharing Embeddings »
Hossein Hosseini · Hyunsin Park · Sungrack Yun · Christos Louizos · Joseph B Soriaga · Max Welling -
2020 : 2.7 A Simple Setting for Understanding Neural Architecture Search with Weight-Sharing »
Mikhail Khodak -
2020 Poster: A Sample Complexity Separation between Non-Convex and Convex Meta-Learning »
Nikunj Umesh Saunshi · Yi Zhang · Mikhail Khodak · Sanjeev Arora -
2019 Poster: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Oral: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Poster: Provable Guarantees for Gradient-Based Meta-Learning »
Nina Balcan · Mikhail Khodak · Ameet Talwalkar -
2019 Oral: Provable Guarantees for Gradient-Based Meta-Learning »
Nina Balcan · Mikhail Khodak · Ameet Talwalkar