Timezone: »
We will study large-scale convex optimization algorithms based on the Newton method applied to regularized generalized self-concordant losses, which include logistic regression and softmax regression. We first prove that our new simple scheme based on a sequence of problems with decreasing regularization parameters is provably globally convergent, that this convergence is linear with a constant factor which scales only logarithmically with the condition number. In the parametric setting, we obtain an algorithm with the same scaling than regular first-order methods but with an improved behavior, in particular in ill-conditioned problems. Second, in the non parametric machine learning setting, we provide an explicit algorithm combining the previous scheme with Nyström projection techniques, and prove that it achieves optimal generalization bounds with a time complexity of order O(n\sqrt{n}), a memory complexity of order O(n) and no dependence on the condition number, generalizing the results known for least-squares regression (Joint work with Ulysse Marteau-Ferey and Alessandro Rudi, https://arxiv.org/abs/1907.01771).
Author Information
Francis Bach (INRIA - Ecole Normale Supérieure)
More from the Same Authors
-
2023 : Differentiable Clustering and Partial Fenchel-Young Losses »
Lawrence Stewart · Francis Bach · Felipe Llinares-Lopez · Quentin Berthet -
2023 Poster: On Bridging the Gap between Mean Field and Finite Width Deep Random Multilayer Perceptron with Batch Normalization »
Amir Joudaki · Hadi Daneshmand · Francis Bach -
2023 Poster: Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy »
Blake Woodworth · Konstantin Mishchenko · Francis Bach -
2022 Poster: Convergence of Uncertainty Sampling for Active Learning »
Anant Raj · Francis Bach -
2022 Spotlight: Convergence of Uncertainty Sampling for Active Learning »
Anant Raj · Francis Bach -
2022 Poster: Anticorrelated Noise Injection for Improved Generalization »
Antonio Orvieto · Hans Kersting · Frank Proske · Francis Bach · Aurelien Lucchi -
2022 Spotlight: Anticorrelated Noise Injection for Improved Generalization »
Antonio Orvieto · Hans Kersting · Frank Proske · Francis Bach · Aurelien Lucchi -
2021 Poster: Disambiguation of Weak Supervision leading to Exponential Convergence rates »
Vivien Cabannnes · Francis Bach · Alessandro Rudi -
2021 Spotlight: Disambiguation of Weak Supervision leading to Exponential Convergence rates »
Vivien Cabannnes · Francis Bach · Alessandro Rudi -
2020 : Q&A with Francis Bach »
Francis Bach -
2020 Poster: Stochastic Optimization for Regularized Wasserstein Estimators »
Marin Ballu · Quentin Berthet · Francis Bach -
2020 Poster: Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization »
Hadrien Hendrikx · Lin Xiao · Sebastien Bubeck · Francis Bach · Laurent Massoulié -
2020 Poster: Consistent Structured Prediction with Max-Min Margin Markov Networks »
Alex Nowak · Francis Bach · Alessandro Rudi -
2020 Poster: Structured Prediction with Partial Labelling through the Infimum Loss »
Vivien Cabannnes · Alessandro Rudi · Francis Bach -
2019 Invited Talk: Online Dictionary Learning for Sparse Coding »
Julien Mairal · Francis Bach · Jean Ponce · Guillermo Sapiro -
2017 Poster: Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Yin Tat Lee · Laurent Massoulié -
2017 Talk: Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Yin Tat Lee · Laurent Massoulié