Timezone: »
Scaling probabilistic models to large realistic problems and datasets is a key challenge in machine learning. Central to this effort is the development of tractable probabilistic models (TPMs): models whose structure guarantees efficient probabilistic inference algorithms. The current landscape of TPMs is fragmented: there exist various kinds of TPMs with different strengths and weaknesses. Two of the most prominent classes of TPMs are determinantal point processes (DPPs) and probabilistic circuits (PCs). This paper provides the first systematic study of their relationship. We propose a unified analysis and shared language for discussing DPPs and PCs. Then we establish theoretical barriers for the unification of these two families, and prove that there are cases where DPPs have no compact representation as a class of PCs. We close with a perspective on the central problem of unifying these models.
Author Information
Honghua Zhang (University of California, Los Angeles)
Steven Holtzen (University of California, Los Angeles)
Guy Van den Broeck (University of California, Los Angeles)
More from the Same Authors
-
2023 : A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints »
Kareem Ahmed · Kai-Wei Chang · Guy Van den Broeck -
2023 : Collapsed Inference for Bayesian Deep Learning »
Zhe Zeng · Guy Van den Broeck -
2023 : SIMPLE: A Gradient Estimator for $k$-subset Sampling »
Kareem Ahmed · Zhe Zeng · Mathias Niepert · Guy Van den Broeck -
2023 : Probabilistic Task-Adaptive Graph Rewiring »
Chendi Qian · Andrei Manolache · Kareem Ahmed · Zhe Zeng · Guy Van den Broeck · Mathias Niepert · Christopher Morris -
2023 : A Unified Approach to Count-Based Weakly-Supervised Learning »
Vinay Shukla · Zhe Zeng · Kareem Ahmed · Guy Van den Broeck -
2023 : Panel on Reasoning Capabilities of LLMs »
Guy Van den Broeck · Ishita Dasgupta · Subbarao Kambhampati · Jiajun Wu · Xi Victoria Lin · Samy Bengio · Beliz Gunel -
2023 : AI can Learn from Data. But can it Learn to Reason? »
Guy Van den Broeck -
2023 Oral: Tractable Control for Autoregressive Language Generation »
Honghua Zhang · Meihua Dang · Nanyun Peng · Guy Van den Broeck -
2023 Poster: Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits »
Xuejie Liu · Anji Liu · Guy Van den Broeck · Yitao Liang -
2023 Poster: Tractable Control for Autoregressive Language Generation »
Honghua Zhang · Meihua Dang · Nanyun Peng · Guy Van den Broeck -
2022 : Session 3: New Computational Technologies for Reasoning »
Armando Solar-Lezama · Guy Van den Broeck · Jan-Willem van de Meent · Charles Sutton -
2021 Poster: Probabilistic Generating Circuits »
Honghua Zhang · Brendan Juba · Guy Van den Broeck -
2021 Oral: Probabilistic Generating Circuits »
Honghua Zhang · Brendan Juba · Guy Van den Broeck -
2020 Poster: Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits »
Robert Peharz · Steven Lang · Antonio Vergari · Karl Stelzner · Alejandro Molina · Martin Trapp · Guy Van den Broeck · Kristian Kersting · Zoubin Ghahramani -
2020 Poster: Scaling up Hybrid Probabilistic Inference with Logical and Arithmetic Constraints via Message Passing »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2018 Poster: Sound Abstraction and Decomposition of Probabilistic Programs »
Steven Holtzen · Guy Van den Broeck · Todd Millstein -
2018 Oral: Sound Abstraction and Decomposition of Probabilistic Programs »
Steven Holtzen · Guy Van den Broeck · Todd Millstein -
2018 Poster: A Semantic Loss Function for Deep Learning with Symbolic Knowledge »
Jingyi Xu · Zilu Zhang · Tal Friedman · Yitao Liang · Guy Van den Broeck -
2018 Oral: A Semantic Loss Function for Deep Learning with Symbolic Knowledge »
Jingyi Xu · Zilu Zhang · Tal Friedman · Yitao Liang · Guy Van den Broeck