Timezone: »
Models like BERT or GPT-2 can do amazing things with language, and this raises the interesting question of whether such text-based models could ever really "understand" it. One clear difference between BERT-understanding and human understanding is that BERT doesn't learn to connect language to its actions or its perception of the world it inhabits. I'll discuss an alternative approach to language understanding in which a neural-network-based agent is trained to associate words and phrases with things that it learns to see and do. First, I'll provide some evidence for the promise of this approach by showing that the interactive, first-person perspective of an agent affords it with a particular inductive bias that helps it to extend its training experience to generalize to out-of-distribution settings in ways that seem natural or 'systematic'. Second, I'll show the amount of 'propositional' (i.e. linguistic) knowledge that emerges in the internal states of the agent as it interacts with the world can be increased significantly by it learning to make predictions about observations multiple timesteps into the future. This underlines some important common ground between the agent-based and BERT-style approaches: both attest to the power of prediction and the importance of context in acquiring semantic representations. Finally, I'll connect BERT and agent-based learning in a more literal way, by showing how an agent endowed with BERT representations can achieve substantial (zero-shot) transfer from template-based language to noisy natural instructions given by humans with access to the agent's world.
Author Information
Feilx Hill (Deepmind)
More from the Same Authors
-
2023 Poster: The Edge of Orthogonality: A Simple View of What Makes BYOL Tick »
Pierre Richemond · Allison Tam · Yunhao Tang · Florian Strub · Bilal Piot · Feilx Hill -
2022 Poster: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Spotlight: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2020 Poster: Probing Emergent Semantics in Predictive Agents via Question Answering »
Abhishek Das · Federico Carnevale · Hamza Merzic · Laura Rimell · Rosalia Schneider · Josh Abramson · Alden Hung · Arun Ahuja · Stephen Clark · Greg Wayne · Feilx Hill -
2018 Poster: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Oral: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap