Timezone: »
Author Information
Neil Lawrence (University of Cambridge)
Neil Lawrence is the DeepMind Professor of Machine Learning at the University of Cambridge and a Senior AI Fellow at the Alan Turing Institute.
Mihaela van der Schaar (UCLA)

Professor van der Schaar is John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine at the University of Cambridge, a Turing Faculty Fellow at The Alan Turing Institute in London, and Chancellor's Professor at UCLA. She was elected IEEE Fellow in 2009. She has received numerous awards, including the Oon Prize on Preventative Medicine from the University of Cambridge (2018), an NSF Career Award (2004), 3 IBM Faculty Awards, the IBM Exploratory Stream Analytics Innovation Award, the Philips Make a Difference Award and several best paper awards, including the IEEE Darlington Award. She holds 35 granted USA patents. In 2019, she was identified by National Endowment for Science, Technology and the Arts as the female researcher based in the UK with the most publications in the field of AI. She was also elected as a 2019 "Star in Computer Networking and Communications". Her current research focus is on machine learning, AI and operations research for healthcare and medicine. For more details, see her website: http://www.vanderschaar-lab.com/
Alex Smola (Amazon)
Valerio Perrone (Amazon)
Jack Parker-Holder (University of Oxford)
Zhengying Liu (Inria)
More from the Same Authors
-
2021 : Multimodal AutoML on Structured Tables with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alex Smola -
2021 : Meta Learning MDPs with linear transition models »
Robert Müller · Aldo Pacchiano · Jack Parker-Holder -
2021 : Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alex Smola -
2022 : Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alex Smola -
2022 : Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations »
Cong Lu · Philip Ball · Tim G. J Rudner · Jack Parker-Holder · Michael A Osborne · Yee-Whye Teh -
2023 Poster: Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · University of California James Sharpnack · Alex Smola · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Discussion Panel »
Percy Liang · Léon Bottou · Jayashree Kalpathy-Cramer · Alex Smola -
2022 Poster: Evolving Curricula with Regret-Based Environment Design »
Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2022 Poster: Data-SUITE: Data-centric identification of in-distribution incongruous examples »
Nabeel Seedat · Jonathan Crabbé · Mihaela van der Schaar -
2022 Poster: Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations »
Nabeel Seedat · Fergus Imrie · Alexis Bellot · Zhaozhi Qian · Mihaela van der Schaar -
2022 Spotlight: Data-SUITE: Data-centric identification of in-distribution incongruous examples »
Nabeel Seedat · Jonathan Crabbé · Mihaela van der Schaar -
2022 Spotlight: Evolving Curricula with Regret-Based Environment Design »
Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2022 Spotlight: Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations »
Nabeel Seedat · Fergus Imrie · Alexis Bellot · Zhaozhi Qian · Mihaela van der Schaar -
2022 Poster: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2022 Oral: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2021 : Mihaela Van der Schaar: Time-series in healthcare: challenges and solutions »
Mihaela van der Schaar -
2021 : Quantitative epistemology: conceiving a new human-machine partnership »
Mihaela van der Schaar -
2021 Poster: Augmented World Models Facilitate Zero-Shot Dynamics Generalization From a Single Offline Environment »
Philip Ball · Cong Lu · Jack Parker-Holder · Stephen Roberts -
2021 Spotlight: Augmented World Models Facilitate Zero-Shot Dynamics Generalization From a Single Offline Environment »
Philip Ball · Cong Lu · Jack Parker-Holder · Stephen Roberts -
2021 : Synthetic Healthcare Data Generation and Assessment: Challenges, Methods, and Impact on Machine Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2020 : "AutoGluon and Distillation" by Alex Smola »
Alex Smola -
2020 : Contributed Talk 3: How far are we from true AutoML: reflection from winning solutions and results of AutoDL challenge »
Zhengying Liu -
2020 : "Automated ML and its transformative impact on medicine and healthcare" by Mihaela van der Schaar »
Mihaela van der Schaar -
2020 : Contributed Talk 2: Bayesian Optimization with Fairness Constraints »
Valerio Perrone -
2020 : Contributed Talk 1: Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits »
Jack Parker-Holder · Vu Nguyen · Stephen Roberts -
2020 : "Open Challenges for Automated Machine Learning: Solving Intellectual Debt with Auto AI" by Neil Lawrence »
Neil Lawrence -
2020 Workshop: Machine Learning for Global Health »
Danielle Belgrave · Danielle Belgrave · Stephanie Hyland · Charles Onu · Nicholas Furnham · Ernest Mwebaze · Neil Lawrence -
2020 : Panel discussion »
Neil Lawrence · Mohammad Ghavamzadeh · Leilani Gilpin · Huyen Nguyen · Ernest Mwebaze · Nevena Lalic -
2020 : Spotlight talk 2 - Ridge Riding: Finding diverse solutions by following eigenvectors of the Hessian »
Jack Parker-Holder -
2020 Workshop: Challenges in Deploying and Monitoring Machine Learning Systems »
Alessandra Tosi · Nathan Korda · Neil Lawrence -
2020 : Invited Talk: Learning despite the unknown - missing data imputation in healthcare »
Mihaela van der Schaar -
2020 Poster: Stochastic Flows and Geometric Optimization on the Orthogonal Group »
Krzysztof Choromanski · David Cheikhi · Jared Quincy Davis · Valerii Likhosherstov · Achille Nazaret · Achraf Bahamou · Xingyou Song · Mrugank Akarte · Jack Parker-Holder · Jacob Bergquist · Yuan Gao · Aldo Pacchiano · Tamas Sarlos · Adrian Weller · Vikas Sindhwani -
2020 Poster: Learning to Score Behaviors for Guided Policy Optimization »
Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Krzysztof Choromanski · Anna Choromanska · Michael Jordan -
2020 Poster: Ready Policy One: World Building Through Active Learning »
Philip Ball · Jack Parker-Holder · Aldo Pacchiano · Krzysztof Choromanski · Stephen Roberts -
2020 Affinity Workshop: New In ML »
Zhen Xu · Sparkle Russell-Puleri · Zhengying Liu · Sinead A Williamson · Matthias W Seeger · Wei-Wei Tu · Samy Bengio · Isabelle Guyon -
2019 Poster: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Poster: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2019 Oral: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Oral: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2019 Tutorial: A Tutorial on Attention in Deep Learning »
Alex Smola · Aston Zhang -
2018 Poster: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Oral: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Poster: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa · Mihaela van der Schaar -
2017 Poster: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Poster: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa · Scott B Hu · Mihaela van der Schaar -
2017 Talk: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Talk: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa · Scott B Hu · Mihaela van der Schaar -
2017 Poster: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Manzil Zaheer · Amr Ahmed · Alex Smola -
2017 Talk: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Manzil Zaheer · Amr Ahmed · Alex Smola -
2017 Tutorial: Distributed Deep Learning with MxNet Gluon »
Alex Smola · Aran Khanna