Timezone: »
Author Information
Krzysztof Dembczynski (Poznan University of Technology)
Krzysztof Dembczyński is an assistant professor at Poznań University of Technology. He received his B.Sc., M.Sc., and Ph.D. degrees in computer science from the same university. As a post-doctoral researcher he spent two years from 2009 to 2011 in the Knowledge Engineering & Bioinformatics Lab at Marburg University, Germany. His articles have been published at the main conferences (ECML,ICML, NIPS) and in the leading journals (JMLR, MLJ, DAMI) in the field of machine learning. As a co-author he won the best paper award at the European Conference on Artificial Intelligence 2012 and at the Asian Conference on Machine Learning 2015. He also gave a tutorial on multi-target prediction problems at the International Conference on Machine Learning 2013 and at Algorithmic Learning Theory/Discovery Science 2013. He serves as a member of the program committees of major conferences in the field of artificial intelligence (ICML, NIPS, IJCAI, AAAI, KDD) and as a reviewer for several international journals (MLJ, DAMI, JMLR). He is a laureate of a prestigious scholarship in the HOMING PLUS programme awarded by the Foundation for Polish Science (2012– 2014). He was also receiving a stipend for outstanding young scientists funded by the Polish Ministry of Science and Higher Education (2011–2013).
Prateek Jain (Microsoft Research)
Alina Beygelzimer (Yahoo Research)
Inderjit Dhillon (UT Austin & Amazon)
Inderjit Dhillon is the Gottesman Family Centennial Professor of Computer Science and Mathematics at UT Austin, where he is also the Director of the ICES Center for Big Data Analytics. His main research interests are in big data, machine learning, network analysis, linear algebra and optimization. He received his B.Tech. degree from IIT Bombay, and Ph.D. from UC Berkeley. Inderjit has received several awards, including the ICES Distinguished Research Award, the SIAM Outstanding Paper Prize, the Moncrief Grand Challenge Award, the SIAM Linear Algebra Prize, the University Research Excellence Award, and the NSF Career Award. He has published over 160 journal and conference papers, and has served on the Editorial Board of the Journal of Machine Learning Research, the IEEE Transactions of Pattern Analysis and Machine Intelligence, Foundations and Trends in Machine Learning and the SIAM Journal for Matrix Analysis and Applications. Inderjit is an ACM Fellow, an IEEE Fellow, a SIAM Fellow and an AAAS Fellow.
Anna Choromanska (NYU Tandon School of Engineering)
Maryam Majzoubi (New York University)
Yashoteja Prabhu (Microsoft Research India)
John Langford (Microsoft Research)
More from the Same Authors
-
2021 : Provable RL with Exogenous Distractors via Multistep Inverse Dynamics »
Yonathan Efroni · Dipendra Misra · Akshay Krishnamurthy · Alekh Agarwal · John Langford -
2022 : Interaction-Grounded Learning with Action-inclusive Feedback »
Tengyang Xie · Akanksha Saran · Dylan Foster · Lekan Molu · Ida Momennejad · Nan Jiang · Paul Mineiro · John Langford -
2022 : Positive Unlabeled Contrastive Representation Learning »
Anish Acharya · Sujay Sanghavi · Li Jing · Bhargav Bhushanam · Michael Rabbat · Dhruv Choudhary · Inderjit Dhillon -
2023 Workshop: Interactive Learning with Implicit Human Feedback »
Andi Peng · Akanksha Saran · Andreea Bobu · Tengyang Xie · Pierre-Yves Oudeyer · Anca Dragan · John Langford -
2023 Tutorial: Discovering Agent-Centric Latent States in Theory and in Practice »
John Langford · Alex Lamb -
2022 Poster: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Contextual Bandits with Large Action Spaces: Made Practical »
Yinglun Zhu · Dylan Foster · John Langford · Paul Mineiro -
2022 Spotlight: Contextual Bandits with Large Action Spaces: Made Practical »
Yinglun Zhu · Dylan Foster · John Langford · Paul Mineiro -
2022 Spotlight: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Linear Bandit Algorithms with Sublinear Time Complexity »
Shuo Yang · Tongzheng Ren · Sanjay Shakkottai · Eric Price · Inderjit Dhillon · Sujay Sanghavi -
2022 Spotlight: Linear Bandit Algorithms with Sublinear Time Complexity »
Shuo Yang · Tongzheng Ren · Sanjay Shakkottai · Eric Price · Inderjit Dhillon · Sujay Sanghavi -
2022 : Introduction »
John Langford -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Poster: Interaction-Grounded Learning »
Tengyang Xie · John Langford · Paul Mineiro · Ida Momennejad -
2021 Poster: Top-k eXtreme Contextual Bandits with Arm Hierarchy »
Rajat Sen · Alexander Rakhlin · Lexing Ying · Rahul Kidambi · Dean Foster · Daniel Hill · Inderjit Dhillon -
2021 Spotlight: Interaction-Grounded Learning »
Tengyang Xie · John Langford · Paul Mineiro · Ida Momennejad -
2021 Spotlight: Top-k eXtreme Contextual Bandits with Arm Hierarchy »
Rajat Sen · Alexander Rakhlin · Lexing Ying · Rahul Kidambi · Dean Foster · Daniel Hill · Inderjit Dhillon -
2021 Poster: ChaCha for Online AutoML »
Qingyun Wu · Chi Wang · John Langford · Paul Mineiro · Marco Rossi -
2021 Spotlight: ChaCha for Online AutoML »
Qingyun Wu · Chi Wang · John Langford · Paul Mineiro · Marco Rossi -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2021 Expo Workshop: Real World RL: Azure Personalizer & Vowpal Wabbit »
Sheetal Lahabar · Etienne Kintzler · Mark Rucker · Bogdan Mazoure · Qingyun Wu · Pavithra Srinath · Jack Gerrits · Olga Vrousgou · John Langford · Eduardo Salinas -
2020 : Invited Talk 5 Q&A - Inderjit Dhillon »
Inderjit Dhillon -
2020 : Invited Talk 5 - Multi-Output Prediction: Theory and Practice - Inderjit Dhillon »
Inderjit Dhillon -
2020 : Spotlight Talk 5 - Extreme Regression for Ranking & Recommendation »
Yashoteja Prabhu -
2020 : Invited Talk 4 Q&A - Alina Beygelzimer »
Alina Beygelzimer -
2020 : Invited Talk 4 - Contextual Memory Trees - Alina Beygelzimer »
Alina Beygelzimer -
2020 : Invited Talk 3 Q&A - Maryam Majzoubi »
Maryam Majzoubi -
2020 : Invited Talk 3 - Extreme Classification with Logarithmic-depth Streaming Multi-label Decision Trees - Maryam Majzoubi »
Maryam Majzoubi -
2020 : Introduction to Extreme Classification »
Manik Varma · Yashoteja Prabhu -
2020 Workshop: Workshop on eXtreme Classification: Theory and Applications »
Anna Choromanska · John Langford · Maryam Majzoubi · Yashoteja Prabhu -
2020 : Opening Remarks »
Yashoteja Prabhu · Maryam Majzoubi -
2020 Poster: Soft Threshold Weight Reparameterization for Learnable Sparsity »
Aditya Kusupati · Vivek Ramanujan · Raghav Somani · Mitchell Wortsman · Prateek Jain · Sham Kakade · Ali Farhadi -
2020 Poster: Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning »
Dipendra Kumar Misra · Mikael Henaff · Akshay Krishnamurthy · John Langford -
2020 Poster: Learning to Encode Position for Transformer with Continuous Dynamical Model »
Xuanqing Liu · Hsiang-Fu Yu · Inderjit Dhillon · Cho-Jui Hsieh -
2020 Poster: Learning to Score Behaviors for Guided Policy Optimization »
Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Krzysztof Choromanski · Anna Choromanska · Michael Jordan -
2020 Poster: Extreme Multi-label Classification from Aggregated Labels »
Yanyao Shen · Hsiang-Fu Yu · Sujay Sanghavi · Inderjit Dhillon -
2020 Poster: Optimization and Analysis of the pAp@k Metric for Recommender Systems »
Gaurush Hiranandani · Warut Vijitbenjaronk · Sanmi Koyejo · Prateek Jain -
2020 Poster: DROCC: Deep Robust One-Class Classification »
Sachin Goyal · Aditi Raghunathan · Moksh Jain · Harsha Vardhan Simhadri · Prateek Jain -
2019 Workshop: Workshop on AI for autonomous driving »
Anna Choromanska · Larry Jackel · Li Erran Li · Juan Carlos Niebles · Adrien Gaidon · Wei-Lun Chao · Ingmar Posner · Wei-Lun (Harry) Chao -
2019 : panel discussion with Craig Boutilier (Google Research), Emma Brunskill (Stanford), Chelsea Finn (Google Brain, Stanford, UC Berkeley), Mohammad Ghavamzadeh (Facebook AI), John Langford (Microsoft Research) and David Silver (Deepmind) »
Peter Stone · Craig Boutilier · Emma Brunskill · Chelsea Finn · John Langford · David Silver · Mohammad Ghavamzadeh -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 : invited talk by John Langford (Microsoft Research): How do we make Real World Reinforcement Learning revolution? »
John Langford -
2019 Poster: Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case »
Alina Beygelzimer · David Pal · Balazs Szorenyi · Devanathan Thiruvenkatachari · Chen-Yu Wei · Chicheng Zhang -
2019 Poster: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Oral: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Oral: Bandit Multiclass Linear Classification: Efficient Algorithms for the Separable Case »
Alina Beygelzimer · David Pal · Balazs Szorenyi · Devanathan Thiruvenkatachari · Chen-Yu Wei · Chicheng Zhang -
2019 Poster: SGD without Replacement: Sharper Rates for General Smooth Convex Functions »
Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2019 Oral: SGD without Replacement: Sharper Rates for General Smooth Convex Functions »
Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2019 Poster: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Poster: Contextual Memory Trees »
Wen Sun · Alina Beygelzimer · Hal Daumé III · John Langford · Paul Mineiro -
2019 Oral: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Oral: Contextual Memory Trees »
Wen Sun · Alina Beygelzimer · Hal Daumé III · John Langford · Paul Mineiro -
2018 Poster: A Reductions Approach to Fair Classification »
Alekh Agarwal · Alina Beygelzimer · Miroslav Dudik · John Langford · Hanna Wallach -
2018 Oral: A Reductions Approach to Fair Classification »
Alekh Agarwal · Alina Beygelzimer · Miroslav Dudik · John Langford · Hanna Wallach -
2018 Poster: Learning long term dependencies via Fourier recurrent units »
Jiong Zhang · Yibo Lin · Zhao Song · Inderjit Dhillon -
2018 Poster: Towards Fast Computation of Certified Robustness for ReLU Networks »
Tsui-Wei Weng · Huan Zhang · Hongge Chen · Zhao Song · Cho-Jui Hsieh · Luca Daniel · Duane Boning · Inderjit Dhillon -
2018 Oral: Towards Fast Computation of Certified Robustness for ReLU Networks »
Tsui-Wei Weng · Huan Zhang · Hongge Chen · Zhao Song · Cho-Jui Hsieh · Luca Daniel · Duane Boning · Inderjit Dhillon -
2018 Oral: Learning long term dependencies via Fourier recurrent units »
Jiong Zhang · Yibo Lin · Zhao Song · Inderjit Dhillon -
2018 Poster: Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization »
Jiong Zhang · Qi Lei · Inderjit Dhillon -
2018 Poster: Learning Deep ResNet Blocks Sequentially using Boosting Theory »
Furong Huang · Jordan Ash · John Langford · Robert Schapire -
2018 Poster: Differentially Private Matrix Completion Revisited »
Prateek Jain · Om Dipakbhai Thakkar · Abhradeep Thakurta -
2018 Oral: Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization »
Jiong Zhang · Qi Lei · Inderjit Dhillon -
2018 Oral: Learning Deep ResNet Blocks Sequentially using Boosting Theory »
Furong Huang · Jordan Ash · John Langford · Robert Schapire -
2018 Oral: Differentially Private Matrix Completion Revisited »
Prateek Jain · Om Dipakbhai Thakkar · Abhradeep Thakurta -
2017 Workshop: ML on a budget: IoT, Mobile and other tiny-ML applications »
Manik Varma · Venkatesh Saligrama · Prateek Jain -
2017 Poster: ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices »
Chirag Gupta · ARUN SUGGALA · Ankit Goyal · Saurabh Goyal · Ashish Kumar · Bhargavi Paranjape · Harsha Vardhan Simhadri · Raghavendra Udupa · Manik Varma · Prateek Jain -
2017 Poster: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Consistency Analysis for Binary Classification Revisited »
Krzysztof Dembczynski · Wojciech Kotlowski · Sanmi Koyejo · Nagarajan Natarajan -
2017 Poster: Gradient Boosted Decision Trees for High Dimensional Sparse Output »
Si Si · Huan Zhang · Sathiya Keerthi · Dhruv Mahajan · Inderjit Dhillon · Cho-Jui Hsieh -
2017 Talk: ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices »
Chirag Gupta · ARUN SUGGALA · Ankit Goyal · Saurabh Goyal · Ashish Kumar · Bhargavi Paranjape · Harsha Vardhan Simhadri · Raghavendra Udupa · Manik Varma · Prateek Jain -
2017 Talk: Consistency Analysis for Binary Classification Revisited »
Krzysztof Dembczynski · Wojciech Kotlowski · Sanmi Koyejo · Nagarajan Natarajan -
2017 Talk: Gradient Boosted Decision Trees for High Dimensional Sparse Output »
Si Si · Huan Zhang · Sathiya Keerthi · Dhruv Mahajan · Inderjit Dhillon · Cho-Jui Hsieh -
2017 Talk: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Logarithmic Time One-Against-Some »
Hal Daumé · Nikos Karampatziakis · John Langford · Paul Mineiro -
2017 Poster: Recovery Guarantees for One-hidden-layer Neural Networks »
Kai Zhong · Zhao Song · Prateek Jain · Peter Bartlett · Inderjit Dhillon -
2017 Poster: Nearly Optimal Robust Matrix Completion »
Yeshwanth Cherapanamjeri · Prateek Jain · Kartik Gupta -
2017 Poster: Active Heteroscedastic Regression »
Kamalika Chaudhuri · Prateek Jain · Nagarajan Natarajan -
2017 Poster: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Poster: Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization »
Qi Lei · En-Hsu Yen · Chao-Yuan Wu · Inderjit Dhillon · Pradeep Ravikumar -
2017 Talk: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Active Heteroscedastic Regression »
Kamalika Chaudhuri · Prateek Jain · Nagarajan Natarajan -
2017 Talk: Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization »
Qi Lei · En-Hsu Yen · Chao-Yuan Wu · Inderjit Dhillon · Pradeep Ravikumar -
2017 Talk: Nearly Optimal Robust Matrix Completion »
Yeshwanth Cherapanamjeri · Prateek Jain · Kartik Gupta -
2017 Talk: Logarithmic Time One-Against-Some »
Hal Daumé · Nikos Karampatziakis · John Langford · Paul Mineiro -
2017 Talk: Recovery Guarantees for One-hidden-layer Neural Networks »
Kai Zhong · Zhao Song · Prateek Jain · Peter Bartlett · Inderjit Dhillon -
2017 Tutorial: Real World Interactive Learning »
Alekh Agarwal · John Langford