Timezone: »
Developing algorithms that are able to generalize to a novel task given only a few labeled examples represents a fundamental challenge in closing the gap between machine- and human-level performance. The core of human cognition lies in the structured, reusable concepts that help us to rapidly adapt to new tasks and provide reasoning behind our decisions. However, existing meta-learning methods learn complex representations across prior labeled tasks without imposing any structure on the learned representations. In this talk I will discuss how meta-learning methods can improve generalization ability by learning to learn along human-interpretable concept dimensions. Instead of learning a joint unstructured metric space. We learn mappings of high-level concepts into semi-structured metric spaces, and effectively combine the outputs of independent concept learners. Experiments on diverse domains, including a benchmark image classification dataset and a novel single-cell dataset from a biological domain show significant gains over strong meta-learning baselines.
Author Information
Jure Leskovec (Stanford University)
More from the Same Authors
-
2022 : LinkBERT: Language Model Pretraining with Document Link Knowledge »
Michihiro Yasunaga · Jure Leskovec · Percy Liang -
2023 Poster: Geometric Latent Diffusion Models for 3D Molecule Generation »
Minkai Xu · Alexander Powers · Ron Dror · Stefano Ermon · Jure Leskovec -
2023 Poster: Retrieval-Augmented Multimodal Language Modeling »
Michihiro Yasunaga · Armen Aghajanyan · Weijia Shi · Richard James · Jure Leskovec · Percy Liang · Mike Lewis · Luke Zettlemoyer · Scott Yih -
2021 Poster: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Oral: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Poster: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings »
Matthias Fey · Jan Eric Lenssen · Frank Weichert · Jure Leskovec -
2021 Spotlight: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings »
Matthias Fey · Jan Eric Lenssen · Frank Weichert · Jure Leskovec -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2020 : Graph Neural Networks for Reasoning over Multimodal Content »
Jure Leskovec -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Invited Talk 7 Q&A - Jure Leskovec »
Jure Leskovec -
2020 : Update: Open Graph Benchmark »
Jure Leskovec -
2020 Workshop: Graph Representation Learning and Beyond (GRL+) »
Petar Veličković · Michael M. Bronstein · Andreea Deac · Will Hamilton · Jessica Hamrick · Milad Hashemi · Stefanie Jegelka · Jure Leskovec · Renjie Liao · Federico Monti · Yizhou Sun · Kevin Swersky · Rex (Zhitao) Ying · Marinka Zitnik -
2020 Poster: Coresets for Data-efficient Training of Machine Learning Models »
Baharan Mirzasoleiman · Jeff Bilmes · Jure Leskovec -
2020 Poster: Graph Structure of Neural Networks »
Jiaxuan You · Jure Leskovec · Kaiming He · Saining Xie -
2020 Poster: Learning to Simulate Complex Physics with Graph Networks »
Alvaro Sanchez-Gonzalez · Jonathan Godwin · Tobias Pfaff · Rex (Zhitao) Ying · Jure Leskovec · Peter Battaglia -
2019 Poster: Position-aware Graph Neural Networks »
Jiaxuan You · Rex (Zhitao) Ying · Jure Leskovec -
2019 Oral: Position-aware Graph Neural Networks »
Jiaxuan You · Rex (Zhitao) Ying · Jure Leskovec -
2018 Poster: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models »
Jiaxuan You · Rex (Zhitao) Ying · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Oral: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models »
Jiaxuan You · Rex (Zhitao) Ying · Xiang Ren · Will Hamilton · Jure Leskovec