Timezone: »
Learning long-range behaviors on complex high-dimensional agents is a fundamental problem in robot learning. For such tasks, we argue that transferring learned information from a morphologically simpler agent can massively improve the sample efficiency of a more complex one. To this end, we propose a hierarchical decoupling of policies into two parts: an independently learned low-level policy and a transferable high-level policy. To remedy poor transfer performance due to mismatch in morphologies, we contribute two key ideas. First, we show that incentivizing a complex agent's low-level to imitate a simpler agent's low-level significantly improves zero-shot high-level transfer. Second, we show that KL-regularized training of the high level stabilizes learning and prevents mode-collapse. Finally, on a suite of publicly released navigation and manipulation environments, we demonstrate the applicability of hierarchical transfer on long-range tasks across morphologies.
Author Information
Donald Hejna (UC Berkeley)
Lerrel Pinto (NYU/Berkeley)
Pieter Abbeel (UC Berkeley)
More from the Same Authors
-
2021 : Panel Discussion »
Rosemary Nan Ke · Danijar Hafner · Pieter Abbeel · Chelsea Finn · Chelsea Finn -
2021 : Invited Talk by Pieter Abbeel »
Pieter Abbeel -
2021 Workshop: ICML 2021 Workshop on Unsupervised Reinforcement Learning »
Feryal Behbahani · Joelle Pineau · Lerrel Pinto · Roberta Raileanu · Aravind Srinivas · Denis Yarats · Amy Zhang -
2021 Poster: Reinforcement Learning with Prototypical Representations »
Denis Yarats · Rob Fergus · Alessandro Lazaric · Lerrel Pinto -
2021 Spotlight: Reinforcement Learning with Prototypical Representations »
Denis Yarats · Rob Fergus · Alessandro Lazaric · Lerrel Pinto