Timezone: »
Games are an increasingly useful tool for training and testing learning algorithms. Recent examples include GANs, AlphaZero and the AlphaStar league. However, multi-agent learning can be extremely difficult to predict and control. Learning dynamics even in simple games can yield chaotic behavior. In this paper, we present basic \emph{mechanism design} tools for constructing games with predictable and controllable dynamics. We show that arbitrarily large and complex network games, encoding both cooperation (team play) and competition (zero-sum interaction), exhibit conservation laws when agents use the standard regret-minimizing dynamics known as Follow-the-Regularized-Leader. These laws persist when different agents use different dynamics and encode long-range correlations between agents' behavior, even though the agents may not interact directly. Moreover, we provide sufficient conditions under which the dynamics have multiple, linearly independent, conservation laws. Increasing the number of conservation laws results in more predictable dynamics, eventually making chaotic behavior formally impossible in some cases.
Author Information
Sai Ganesh Nagarajan (SUTD)
David Balduzzi (DeepMind)
Georgios Piliouras (Singapore University of Technology and Design)
More from the Same Authors
-
2021 : Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games »
Stefanos Leonardos · Will Overman · Ioannis Panageas · Georgios Piliouras -
2022 Poster: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2022 Spotlight: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2021 Poster: Efficient Online Learning for Dynamic k-Clustering »
Dimitris Fotakis · Georgios Piliouras · Stratis Skoulakis -
2021 Spotlight: Efficient Online Learning for Dynamic k-Clustering »
Dimitris Fotakis · Georgios Piliouras · Stratis Skoulakis -
2021 Poster: Follow-the-Regularized-Leader Routes to Chaos in Routing Games »
Jakub Bielawski · Thiparat Chotibut · Fryderyk Falniowski · Grzegorz Kosiorowski · Michał Misiurewicz · Georgios Piliouras -
2021 Poster: Online Optimization in Games via Control Theory: Connecting Regret, Passivity and Poincaré Recurrence »
Yun Kuen Cheung · Georgios Piliouras -
2021 Spotlight: Follow-the-Regularized-Leader Routes to Chaos in Routing Games »
Jakub Bielawski · Thiparat Chotibut · Fryderyk Falniowski · Grzegorz Kosiorowski · Michał Misiurewicz · Georgios Piliouras -
2021 Spotlight: Online Optimization in Games via Control Theory: Connecting Regret, Passivity and Poincaré Recurrence »
Yun Kuen Cheung · Georgios Piliouras -
2021 Poster: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2021 Spotlight: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2020 Poster: Better depth-width trade-offs for neural networks through the lens of dynamical systems »
Evangelos Chatziafratis · Sai Ganesh Nagarajan · Ioannis Panageas -
2019 Poster: Multiplicative Weights Updates as a distributed constrained optimization algorithm: Convergence to second-order stationary points almost always »
Ioannis Panageas · Georgios Piliouras · xiao wang -
2019 Oral: Multiplicative Weights Updates as a distributed constrained optimization algorithm: Convergence to second-order stationary points almost always »
Ioannis Panageas · Georgios Piliouras · xiao wang