Timezone: »
Recently there have been several attempts to extend Nesterov's accelerated algorithm to smooth stochastic and variance-reduced optimization. In this paper, we show that there is a simpler approach to acceleration: applying optimistic online learning algorithms and querying the gradient oracle at the online average of the intermediate optimization iterates. In particular, we tighten a recent result of Cutkosky (2019) to demonstrate theoretically that online iterate averaging results in a reduced optimization gap, independently of the algorithm involved. We show that carefully combining this technique with existing generic optimistic online learning algorithms yields the optimal accelerated rates for optimizing strongly-convex and non-strongly-convex, possibly composite objectives, with deterministic as well as stochastic first-order oracles. We further extend this idea to variance-reduced optimization. Finally, we also provide ``universal'' algorithms that achieve the optimal rate for smooth and non-smooth composite objectives simultaneously without further tuning, generalizing the results of Kavis et al. (2019) and solving a number of their open problems.
Author Information
Pooria Joulani (DeepMind)
Anant Raj (Max-Planck Institute for Intelligent Systems)
Marie-Curie Fellow
Andras Gyorgy (DeepMind)
Csaba Szepesvari (DeepMind/University of Alberta)
More from the Same Authors
-
2022 : Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms »
MohammadJavad Azizi · Thang Duong · Yasin Abbasi-Yadkori · Claire Vernade · Andras Gyorgy · Mohammad Ghavamzadeh -
2022 : Improved Generalization Bounds for Transfer Learning via Neural Collapse »
Tomer Galanti · Andras Gyorgy · Marcus Hutter -
2023 Poster: Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions »
Anant Raj · Lingjiong Zhu · Mert Gurbuzbalaban · Umut Simsekli -
2023 Poster: Stochastic Gradient Succeeds for Bandits »
Jincheng Mei · Zixin Zhong · Bo Dai · Alekh Agarwal · Csaba Szepesvari · Dale Schuurmans -
2023 Poster: Understanding Self-Predictive Learning for Reinforcement Learning »
Yunhao Tang · Zhaohan Guo · Pierre Richemond · Bernardo Avila Pires · Yash Chandak · Remi Munos · Mark Rowland · Mohammad Gheshlaghi Azar · Charline Le Lan · Clare Lyle · Andras Gyorgy · Shantanu Thakoor · Will Dabney · Bilal Piot · Daniele Calandriello · Michal Valko -
2023 Poster: Revisiting Simple Regret: Fast Rates for Returning a Good Arm »
Yao Zhao · Connor J Stephens · Csaba Szepesvari · Kwang-Sung Jun -
2023 Poster: Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost »
Sanae Amani · Tor Lattimore · Andras Gyorgy · Lin Yang -
2023 Poster: The Optimal Approximation Factors in Misspecified Off-Policy Value Function Estimation »
Philip Amortila · Nan Jiang · Csaba Szepesvari -
2023 Poster: Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice »
Toshinori Kitamura · Tadashi Kozuno · Yunhao Tang · Nino Vieillard · Michal Valko · Wenhao Yang · Jincheng Mei · Pierre Menard · Mohammad Gheshlaghi Azar · Remi Munos · Olivier Pietquin · Matthieu Geist · Csaba Szepesvari · Wataru Kumagai · Yutaka Matsuo -
2022 Poster: Convergence of Uncertainty Sampling for Active Learning »
Anant Raj · Francis Bach -
2022 Spotlight: Convergence of Uncertainty Sampling for Active Learning »
Anant Raj · Francis Bach -
2021 Workshop: Workshop on Reinforcement Learning Theory »
Shipra Agrawal · Simon Du · Niao He · Csaba Szepesvari · Lin Yang -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor -
2021 Poster: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Spotlight: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Poster: Adapting to Delays and Data in Adversarial Multi-Armed Bandits »
Andras Gyorgy · Pooria Joulani -
2021 Poster: Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient »
Botao Hao · Yaqi Duan · Tor Lattimore · Csaba Szepesvari · Mengdi Wang -
2021 Poster: Improved Regret Bound and Experience Replay in Regularized Policy Iteration »
Nevena Lazic · Dong Yin · Yasin Abbasi-Yadkori · Csaba Szepesvari -
2021 Poster: Leveraging Non-uniformity in First-order Non-convex Optimization »
Jincheng Mei · Yue Gao · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2021 Poster: A Distribution-dependent Analysis of Meta Learning »
Mikhail Konobeev · Ilja Kuzborskij · Csaba Szepesvari -
2021 Oral: Improved Regret Bound and Experience Replay in Regularized Policy Iteration »
Nevena Lazic · Dong Yin · Yasin Abbasi-Yadkori · Csaba Szepesvari -
2021 Spotlight: Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient »
Botao Hao · Yaqi Duan · Tor Lattimore · Csaba Szepesvari · Mengdi Wang -
2021 Spotlight: Leveraging Non-uniformity in First-order Non-convex Optimization »
Jincheng Mei · Yue Gao · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: A Distribution-dependent Analysis of Meta Learning »
Mikhail Konobeev · Ilja Kuzborskij · Csaba Szepesvari -
2021 Poster: Bootstrapping Fitted Q-Evaluation for Off-Policy Inference »
Botao Hao · Xiang Ji · Yaqi Duan · Hao Lu · Csaba Szepesvari · Mengdi Wang -
2021 Spotlight: Bootstrapping Fitted Q-Evaluation for Off-Policy Inference »
Botao Hao · Xiang Ji · Yaqi Duan · Hao Lu · Csaba Szepesvari · Mengdi Wang -
2021 Spotlight: Adapting to Delays and Data in Adversarial Multi-Armed Bandits »
Andras Gyorgy · Pooria Joulani -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2021 Poster: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 : Efficient Planning in Large MDPs with Weak Linear Function Approximation - Csaba Szepesvari »
Csaba Szepesvari -
2020 : Speaker Panel »
Csaba Szepesvari · Martha White · Sham Kakade · Gergely Neu · Shipra Agrawal · Akshay Krishnamurthy -
2020 Poster: On the Global Convergence Rates of Softmax Policy Gradient Methods »
Jincheng Mei · Chenjun Xiao · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Model-Based Reinforcement Learning with Value-Targeted Regression »
Alex Ayoub · Zeyu Jia · Csaba Szepesvari · Mengdi Wang · Lin Yang -
2020 Poster: Non-Stationary Delayed Bandits with Intermediate Observations »
Claire Vernade · Andras Gyorgy · Timothy Mann -
2020 Poster: Learning with Good Feature Representations in Bandits and in RL with a Generative Model »
Tor Lattimore · Csaba Szepesvari · Gellért Weisz -
2019 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Alborz Geramifard · Lihong Li · Csaba Szepesvari · Tao Wang -
2019 Poster: POLITEX: Regret Bounds for Policy Iteration using Expert Prediction »
Yasin Abbasi-Yadkori · Peter Bartlett · Kush Bhatia · Nevena Lazic · Csaba Szepesvari · Gellért Weisz -
2019 Poster: Learning from Delayed Outcomes via Proxies with Applications to Recommender Systems »
Timothy Mann · Sven Gowal · Andras Gyorgy · Huiyi Hu · Ray Jiang · Balaji Lakshminarayanan · Prav Srinivasan -
2019 Oral: POLITEX: Regret Bounds for Policy Iteration using Expert Prediction »
Yasin Abbasi-Yadkori · Peter Bartlett · Kush Bhatia · Nevena Lazic · Csaba Szepesvari · Gellért Weisz -
2019 Oral: Learning from Delayed Outcomes via Proxies with Applications to Recommender Systems »
Timothy Mann · Sven Gowal · Andras Gyorgy · Huiyi Hu · Ray Jiang · Balaji Lakshminarayanan · Prav Srinivasan -
2019 Poster: Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits »
Branislav Kveton · Csaba Szepesvari · Sharan Vaswani · Zheng Wen · Tor Lattimore · Mohammad Ghavamzadeh -
2019 Poster: Online Learning to Rank with Features »
Shuai Li · Tor Lattimore · Csaba Szepesvari -
2019 Oral: Online Learning to Rank with Features »
Shuai Li · Tor Lattimore · Csaba Szepesvari -
2019 Oral: Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits »
Branislav Kveton · Csaba Szepesvari · Sharan Vaswani · Zheng Wen · Tor Lattimore · Mohammad Ghavamzadeh -
2019 Poster: CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration »
Gellért Weisz · Andras Gyorgy · Csaba Szepesvari -
2019 Oral: CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration »
Gellért Weisz · Andras Gyorgy · Csaba Szepesvari -
2018 Poster: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2018 Poster: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Oral: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2018 Oral: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Poster: Bandits with Delayed, Aggregated Anonymous Feedback »
Ciara Pike-Burke · Shipra Agrawal · Csaba Szepesvari · Steffen Grünewälder -
2018 Oral: Bandits with Delayed, Aggregated Anonymous Feedback »
Ciara Pike-Burke · Shipra Agrawal · Csaba Szepesvari · Steffen Grünewälder -
2018 Poster: LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration »
Gellért Weisz · Andras Gyorgy · Csaba Szepesvari -
2018 Oral: LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration »
Gellért Weisz · Andras Gyorgy · Csaba Szepesvari -
2017 Poster: Approximate Steepest Coordinate Descent »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Talk: Approximate Steepest Coordinate Descent »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Poster: Online Learning to Rank in Stochastic Click Models »
Masrour Zoghi · Tomas Tunys · Mohammad Ghavamzadeh · Branislav Kveton · Csaba Szepesvari · Zheng Wen -
2017 Talk: Online Learning to Rank in Stochastic Click Models »
Masrour Zoghi · Tomas Tunys · Mohammad Ghavamzadeh · Branislav Kveton · Csaba Szepesvari · Zheng Wen