Timezone: »
Over the last decade, there has been significant progress in the field of machine learning for de novo drug design, particularly in generative modeling of novel chemical structures. However, current generative approaches exhibit a significant challenge: they do not ensure that the proposed molecular structures can be feasibly synthesized nor do they provide the synthesis routes of the proposed small molecules, thereby seriously limiting their practical applicability. In this work, we propose a novel reinforcement learning (RL) setup for de novo drug design: Policy Gradient for Forward Synthesis (PGFS), that addresses this challenge by embedding the concept of synthetic accessibility directly into the de novo drug design system. In this setup, the agent learns to navigate through the immense synthetically accessible chemical space by subjecting initial commercially available molecules to valid chemical reactions at every time step of the iterative virtual synthesis process. The proposed environment for drug discovery provides a highly challenging test-bed for RL algorithms owing to the large state space and high-dimensional continuous action space with hierarchical actions. PGFS achieves state-of-the-art performance in generating structures with high QED and logP. Moreover, we put to test PGFS in an in-silico proof-of-concept associated with three HIV targets, and the candidates generated with PGFS outperformed the existing benchmarks in optimizing the activity against the biological targets. Finally, we describe how the end-to-end training conceptualized in this study represents an important paradigm in radically expanding the synthesizable chemical space and automating the drug discovery process.
Author Information
Sai Krishna Gottipati (99andBeyond)
Reinforcement learning, multi agents, human-in-the-loop etc.. makers of cogment.ai
Boris Sattarov (99andBeyond)
Sufeng Niu (Linkedin)
Yashaswi Pathak (International Institute of Information Technology,Hyderabad)
Haoran Wei (University of Delaware)
Shengchao Liu (MILA-UdeM)
Shengchao Liu (Mila, Université de Montréal)
Simon Blackburn (Mila)
Karam Thomas (99andBeyond)
Connor Coley (MIT)
Jian Tang (HEC Montreal & MILA)
Sarath Chandar (Mila / École Polytechnique de Montréal)
Yoshua Bengio (Montreal Institute for Learning Algorithms)
More from the Same Authors
-
2021 : Cogment: Open Source Framework For Distributed Multi-actor Training, Deployment And Operations »
Sai Krishna Gottipati -
2021 : Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Sékou-Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2021 : Epoch-Wise Double Descent: A Theory of Multi-scale Feature Learning Dynamics »
Mohammad Pezeshki · Amartya Mitra · Yoshua Bengio · Guillaume Lajoie -
2021 : Exploration-Driven Representation Learning in Reinforcement Learning »
Akram Erraqabi · Mingde Zhao · Marlos C. Machado · Yoshua Bengio · Sainbayar Sukhbaatar · Ludovic Denoyer · Alessandro Lazaric -
2021 : Variational Causal Networks: Approximate Bayesian Inference over Causal Structures »
Yashas Annadani · Jonas Rothfuss · Alexandre Lacoste · Nino Scherrer · Anirudh Goyal · Yoshua Bengio · Stefan Bauer -
2022 : On the Generalization and Adaption Performance of Causal Models »
Nino Scherrer · Anirudh Goyal · Stefan Bauer · Yoshua Bengio · Rosemary Nan Ke -
2022 : Reinforced Genetic Algorithm for Structure-based Drug Design »
Tianfan Fu · Wenhao Gao · Connor Coley · Jimeng Sun -
2022 : Evaluating Self-Supervised Learned Molecular Graphs »
Hanchen Wang · Shengchao Liu · Jean Kaddour · Qi Liu · Jian Tang · Matt Kusner · Joan Lasenby -
2022 : MAgNet: Mesh Agnostic Neural PDE Solver »
Oussama Boussif · Yoshua Bengio · Loubna Benabbou · Dan Assouline -
2022 : Sample Efficiency Matters: Benchmarking Molecular Optimization »
Wenhao Gao · Tianfan Fu · Jimeng Sun · Connor Coley -
2022 : Flaky Performances when Pre-Training on Relational Databases with a Plan for Future Characterization Efforts »
Shengchao Liu · David Vazquez · Jian Tang · Pierre-André Noël -
2022 : Evaluating Self-Supervised Learned Molecular Graphs »
Hanchen Wang · Hanchen Wang · Shengchao Liu · Shengchao Liu · Jean Kaddour · Jean Kaddour · Qi Liu · Qi Liu · Jian Tang · Jian Tang · Matt Kusner · Matt Kusner · Joan Lasenby · Joan Lasenby -
2023 Poster: FAENet: Frame Averaging Equivariant GNNs for Materials Modeling »
ALEXANDRE DUVAL · Victor Schmidt · Alex Hernandez-Garcia · Fragkiskos Malliaros · Yoshua Bengio · Santiago Miret · David Rolnick -
2023 Poster: Equivariance with Learned Canonicalization Functions »
Sékou-Oumar Kaba · Arnab Kumar Mondal · Yan Zhang · Yoshua Bengio · Siamak Ravanbakhsh -
2023 Poster: Multi-Objective GFlowNets »
Moksh Jain · Sharath Chandra Raparthy · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Yoshua Bengio · Santiago Miret · Emmanuel Bengio -
2023 Poster: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: GFlowOut: Dropout with Generative Flow Networks »
Dianbo Liu · Moksh Jain · Bonaventure F. P. Dossou · Qianli Shen · Salem Lahlou · Anirudh Goyal · Nikolay Malkin · Chris Emezue · Dinghuai Zhang · Nadhir Hassen · Xu Ji · Kenji Kawaguchi · Yoshua Bengio -
2023 Poster: Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning »
Sébastien Lachapelle · Tristan Deleu · Divyat Mahajan · Ioannis Mitliagkas · Yoshua Bengio · Simon Lacoste-Julien · Quentin Bertrand -
2023 Poster: Interventional Causal Representation Learning »
Kartik Ahuja · Divyat Mahajan · Yixin Wang · Yoshua Bengio -
2023 Poster: Discrete Key-Value Bottleneck »
Frederik Träuble · Anirudh Goyal · Nasim Rahaman · Michael Mozer · Kenji Kawaguchi · Yoshua Bengio · Bernhard Schölkopf -
2023 Poster: A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining »
Shengchao Liu · weitao du · Zhiming Ma · Hongyu Guo · Jian Tang -
2023 Poster: Better Training of GFlowNets with Local Credit and Incomplete Trajectories »
Ling Pan · Nikolay Malkin · Dinghuai Zhang · Yoshua Bengio -
2023 Poster: A theory of continuous generative flow networks »
Salem Lahlou · Tristan Deleu · Pablo Lemos · Dinghuai Zhang · Alexandra Volokhova · Alex Hernandez-Garcia · Lena Nehale Ezzine · Yoshua Bengio · Nikolay Malkin -
2023 Poster: GFlowNet-EM for Learning Compositional Latent Variable Models »
Edward Hu · Nikolay Malkin · Moksh Jain · Katie Everett · Alexandros Graikos · Yoshua Bengio -
2023 Poster: Learning GFlowNets From Partial Episodes For Improved Convergence And Stability »
Kanika Madan · Jarrid Rector-Brooks · Maksym Korablyov · Emmanuel Bengio · Moksh Jain · Andrei-Cristian Nica · Tom Bosc · Yoshua Bengio · Nikolay Malkin -
2023 Oral: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Oral: Interventional Causal Representation Learning »
Kartik Ahuja · Divyat Mahajan · Yixin Wang · Yoshua Bengio -
2023 Oral: Learning GFlowNets From Partial Episodes For Improved Convergence And Stability »
Kanika Madan · Jarrid Rector-Brooks · Maksym Korablyov · Emmanuel Bengio · Moksh Jain · Andrei-Cristian Nica · Tom Bosc · Yoshua Bengio · Nikolay Malkin -
2023 Workshop: Structured Probabilistic Inference and Generative Modeling »
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio -
2022 Workshop: AI for Science »
Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Hanchen Wang · Connor Coley · Le Song · Linfeng Zhang · Marinka Zitnik -
2022 : Neural Scaling of Deep Chemical Models »
Connor Coley · Nathan C. Frey -
2022 Workshop: Hardware-aware efficient training (HAET) »
Gonçalo Mordido · Yoshua Bengio · Ghouthi BOUKLI HACENE · Vincent Gripon · François Leduc-Primeau · Vahid Partovi Nia · Julie Grollier -
2022 : Is a Modular Architecture Enough? »
Sarthak Mittal · Yoshua Bengio · Guillaume Lajoie -
2022 Poster: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Poster: Multi-scale Feature Learning Dynamics: Insights for Double Descent »
Mohammad Pezeshki · Amartya Mitra · Yoshua Bengio · Guillaume Lajoie -
2022 Spotlight: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Spotlight: Multi-scale Feature Learning Dynamics: Insights for Double Descent »
Mohammad Pezeshki · Amartya Mitra · Yoshua Bengio · Guillaume Lajoie -
2022 Poster: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Poster: Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods »
Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen -
2022 Spotlight: Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods »
Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen -
2022 Spotlight: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Poster: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Zhaocheng Zhu · Mikhail Galkin · Zuobai Zhang · Jian Tang -
2022 Poster: Generative Flow Networks for Discrete Probabilistic Modeling »
Dinghuai Zhang · Nikolay Malkin · Zhen Liu · Alexandra Volokhova · Aaron Courville · Yoshua Bengio -
2022 Poster: Towards Scaling Difference Target Propagation by Learning Backprop Targets »
Maxence ERNOULT · Fabrice Normandin · Abhinav Moudgil · Sean Spinney · Eugene Belilovsky · Irina Rish · Blake Richards · Yoshua Bengio -
2022 Spotlight: Towards Scaling Difference Target Propagation by Learning Backprop Targets »
Maxence ERNOULT · Fabrice Normandin · Abhinav Moudgil · Sean Spinney · Eugene Belilovsky · Irina Rish · Blake Richards · Yoshua Bengio -
2022 Spotlight: Generative Flow Networks for Discrete Probabilistic Modeling »
Dinghuai Zhang · Nikolay Malkin · Zhen Liu · Alexandra Volokhova · Aaron Courville · Yoshua Bengio -
2022 Spotlight: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Zhaocheng Zhu · Mikhail Galkin · Zuobai Zhang · Jian Tang -
2021 Workshop: Tackling Climate Change with Machine Learning »
Hari Prasanna Das · Katarzyna Tokarska · Maria João Sousa · Meareg Hailemariam · David Rolnick · Xiaoxiang Zhu · Yoshua Bengio -
2021 Poster: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Spotlight: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Poster: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Poster: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Oral: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2021 Poster: Continuous Coordination As a Realistic Scenario for Lifelong Learning »
Hadi Nekoei · Akilesh Badrinaaraayanan · Aaron Courville · Sarath Chandar -
2021 Spotlight: Continuous Coordination As a Realistic Scenario for Lifelong Learning »
Hadi Nekoei · Akilesh Badrinaaraayanan · Aaron Courville · Sarath Chandar -
2020 : Concluding Remarks »
Sarath Chandar · Shagun Sodhani -
2020 : Q&A by Rich Sutton »
Richard Sutton · Shagun Sodhani · Sarath Chandar -
2020 : QA for invited talk 4 Bengio »
Yoshua Bengio -
2020 : Invited talk 4 Bengio »
Yoshua Bengio -
2020 : Q&A with Irina Rish »
Irina Rish · Shagun Sodhani · Sarath Chandar -
2020 : Keynote: Yoshua Bengio (Q&A) »
Yoshua Bengio -
2020 : Q&A with Jürgen Schmidhuber »
Jürgen Schmidhuber · Shagun Sodhani · Sarath Chandar -
2020 : Keynote: Yoshua Bengio »
Yoshua Bengio -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Opening Remarks: Jian Tang & Le Song »
Jian Tang · Le Song -
2020 : Q&A with Partha Pratim Talukdar »
Partha Talukdar · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Katja Hoffman »
Katja Hofmann · Luisa Zintgraf · Rika Antonova · Sarath Chandar · Shagun Sodhani -
2020 Workshop: 4th Lifelong Learning Workshop »
Shagun Sodhani · Sarath Chandar · Balaraman Ravindran · Doina Precup -
2020 : Opening Comments »
Sarath Chandar · Shagun Sodhani -
2020 Workshop: Object-Oriented Learning: Perception, Representation, and Reasoning »
Sungjin Ahn · Adam Kosiorek · Jessica Hamrick · Sjoerd van Steenkiste · Yoshua Bengio -
2020 Workshop: MLRetrospectives: A Venue for Self-Reflection in ML Research »
Jessica Forde · Jesse Dodge · Mayoore Jaiswal · Rosanne Liu · Ryan Lowe · Rosanne Liu · Joelle Pineau · Yoshua Bengio -
2020 Poster: A Graph to Graphs Framework for Retrosynthesis Prediction »
Chence Shi · Minkai Xu · Hongyu Guo · Ming Zhang · Jian Tang -
2020 Poster: Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules »
Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio -
2020 Poster: Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs »
Meng Qu · Tianyu Gao · Louis-Pascal Xhonneux · Jian Tang -
2020 Poster: Perceptual Generative Autoencoders »
Zijun Zhang · Ruixiang ZHANG · Zongpeng Li · Yoshua Bengio · Liam Paull -
2020 Poster: Continuous Graph Neural Networks »
Louis-Pascal Xhonneux · Meng Qu · Jian Tang -
2020 Poster: Revisiting Fundamentals of Experience Replay »
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney -
2020 Poster: Small-GAN: Speeding up GAN Training using Core-Sets »
Samrath Sinha · Han Zhang · Anirudh Goyal · Yoshua Bengio · Hugo Larochelle · Augustus Odena -
2019 : AI Commons »
Yoshua Bengio -
2019 : Opening remarks »
Yoshua Bengio -
2019 Workshop: AI For Social Good (AISG) »
Margaux Luck · Kris Sankaran · Tristan Sylvain · Sean McGregor · Jonnie Penn · Girmaw Abebe Tadesse · Virgile Sylvain · Myriam Côté · Lester Mackey · Rayid Ghani · Yoshua Bengio -
2019 Workshop: Workshop on Multi-Task and Lifelong Reinforcement Learning »
Sarath Chandar · Shagun Sodhani · Khimya Khetarpal · Tom Zahavy · Daniel J. Mankowitz · Shie Mannor · Balaraman Ravindran · Doina Precup · Chelsea Finn · Abhishek Gupta · Amy Zhang · Kyunghyun Cho · Andrei A Rusu · Facebook Rob Fergus -
2019 : Panel Discussion »
Yoshua Bengio · Andrew Ng · Raia Hadsell · John Platt · Claire Monteleoni · Jennifer Chayes -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Personalized Visualization of the Impact of Climate Change »
Yoshua Bengio -
2019 : Networking Lunch (provided) + Poster Session »
Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki -
2019 Workshop: Climate Change: How Can AI Help? »
David Rolnick · Alexandre Lacoste · Tegan Maharaj · Jennifer Chayes · Yoshua Bengio -
2019 Poster: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: Manifold Mixup: Better Representations by Interpolating Hidden States »
Vikas Verma · Alex Lamb · Christopher Beckham · Amir Najafi · Ioannis Mitliagkas · David Lopez-Paz · Yoshua Bengio -
2019 Poster: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: Manifold Mixup: Better Representations by Interpolating Hidden States »
Vikas Verma · Alex Lamb · Christopher Beckham · Amir Najafi · Ioannis Mitliagkas · David Lopez-Paz · Yoshua Bengio -
2018 Poster: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Oral: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Poster: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2018 Oral: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2017 Workshop: Reproducibility in Machine Learning Research »
Rosemary Nan Ke · Anirudh Goyal · Alex Lamb · Joelle Pineau · Samy Bengio · Yoshua Bengio -
2017 Workshop: Lifelong Learning: A Reinforcement Learning Approach »
Sarath Chandar · Balaraman Ravindran · Daniel J. Mankowitz · Shie Mannor · Tom Zahavy -
2017 Poster: Sharp Minima Can Generalize For Deep Nets »
Laurent Dinh · Razvan Pascanu · Samy Bengio · Yoshua Bengio -
2017 Poster: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: Sharp Minima Can Generalize For Deep Nets »
Laurent Dinh · Razvan Pascanu · Samy Bengio · Yoshua Bengio