Timezone: »

 
Poster
NADS: Neural Architecture Distribution Search for Uncertainty Awareness
Randy Ardywibowo · Shahin Boluki · Xinyu Gong · Zhangyang Wang · Xiaoning Qian

Tue Jul 14 08:00 AM -- 08:45 AM & Tue Jul 14 07:00 PM -- 07:45 PM (PDT) @ None #None

Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data. It becomes important for ML systems in critical applications to accurately quantify its predictive uncertainty and screen out these anomalous inputs. However, existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples. Unlike standard learning tasks, there is currently no well established guiding principle for designing OoD detection architectures that can accurately quantify uncertainty. To address these problems, we first seek to identify guiding principles for designing uncertainty-aware architectures, by proposing Neural Architecture Distribution Search (NADS). NADS searches for a distribution of architectures that perform well on a given task, allowing us to identify common building blocks among all uncertainty-aware architectures. With this formulation, we are able to optimize a stochastic OoD detection objective and construct an ensemble of models to perform OoD detection. We perform multiple OoD detection experiments and observe that our NADS performs favorably, with up to 57% improvement in accuracy compared to state-of-the-art methods among 15 different testing configurations.

Author Information

Randy Ardywibowo (Texas A&M University)
Shahin Boluki (Texas A&M University)
Xinyu Gong (Texas A&M University)
Zhangyang Wang (University of Texas at Austin)
Xiaoning Qian (Texas A&M University)

More from the Same Authors