Timezone: »
Weighted model integration (WMI) is an appealing framework for probabilistic inference: it allows for expressing the complex dependencies in real-world problems, where variables are both continuous and discrete, via the language of Satisfiability Modulo Theories (SMT), as well as to compute probabilistic queries with complex logical and arithmetic constraints. Yet, existing WMI solvers are not ready to scale to these problems. They either ignore the intrinsic dependency structure of the problem entirely, or they are limited to overly restrictive structures. To narrow this gap, we derive a factorized WMI computation enabling us to devise a scalable WMI solver based on message passing, called MP-WMI. Namely, MP-WMI is the first WMI solver that can (i) perform exact inference on the full class of tree-structured WMI problems, and (ii) perform inter-query amortization, e.g., to compute all marginal densities simultaneously. Experimental results show that our solver dramatically outperforms the existingWMI solvers on a large set of benchmarks.
Author Information
Zhe Zeng (University of California, Los Angeles)
Paolo Morettin (University of Trento)
Fanqi Yan (UCAS)
Antonio Vergari (University of California, Los Angeles)
Guy Van den Broeck (University of California, Los Angeles)
More from the Same Authors
-
2022 : P32: Collapsed Inference for Bayesian Deep Learning »
Zhe Zeng -
2023 : A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints »
Kareem Ahmed · Kai-Wei Chang · Guy Van den Broeck -
2023 : Collapsed Inference for Bayesian Deep Learning »
Zhe Zeng · Guy Van den Broeck -
2023 : SIMPLE: A Gradient Estimator for $k$-subset Sampling »
Kareem Ahmed · Zhe Zeng · Mathias Niepert · Guy Van den Broeck -
2023 : Probabilistic Task-Adaptive Graph Rewiring »
Chendi Qian · Andrei Manolache · Kareem Ahmed · Zhe Zeng · Guy Van den Broeck · Mathias Niepert · Christopher Morris -
2023 : A Unified Approach to Count-Based Weakly-Supervised Learning »
Vinay Shukla · Zhe Zeng · Kareem Ahmed · Guy Van den Broeck -
2023 : Panel on Reasoning Capabilities of LLMs »
Guy Van den Broeck · Ishita Dasgupta · Subbarao Kambhampati · Jiajun Wu · Xi Victoria Lin · Samy Bengio · Beliz Gunel -
2023 : AI can Learn from Data. But can it Learn to Reason? »
Guy Van den Broeck -
2023 Oral: Tractable Control for Autoregressive Language Generation »
Honghua Zhang · Meihua Dang · Nanyun Peng · Guy Van den Broeck -
2023 Poster: Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits »
Xuejie Liu · Anji Liu · Guy Van den Broeck · Yitao Liang -
2023 Poster: Tractable Control for Autoregressive Language Generation »
Honghua Zhang · Meihua Dang · Nanyun Peng · Guy Van den Broeck -
2022 : Session 3: New Computational Technologies for Reasoning »
Armando Solar-Lezama · Guy Van den Broeck · Jan-Willem van de Meent · Charles Sutton -
2021 Poster: Probabilistic Generating Circuits »
Honghua Zhang · Brendan Juba · Guy Van den Broeck -
2021 Oral: Probabilistic Generating Circuits »
Honghua Zhang · Brendan Juba · Guy Van den Broeck -
2020 : On the Relationship Between Probabilistic Circuits and Determinantal Point Processes »
Honghua Zhang · Steven Holtzen · Guy Van den Broeck -
2020 Poster: Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits »
Robert Peharz · Steven Lang · Antonio Vergari · Karl Stelzner · Alejandro Molina · Martin Trapp · Guy Van den Broeck · Kristian Kersting · Zoubin Ghahramani -
2019 Workshop: The Third Workshop On Tractable Probabilistic Modeling (TPM) »
Pedro Domingos · Daniel Lowd · Tahrima Rahman · Antonio Vergari · Alejandro Molina · Antonio Vergari -
2018 Poster: Sound Abstraction and Decomposition of Probabilistic Programs »
Steven Holtzen · Guy Van den Broeck · Todd Millstein -
2018 Oral: Sound Abstraction and Decomposition of Probabilistic Programs »
Steven Holtzen · Guy Van den Broeck · Todd Millstein -
2018 Poster: Stein Variational Message Passing for Continuous Graphical Models »
Dilin Wang · Zhe Zeng · Qiang Liu -
2018 Oral: Stein Variational Message Passing for Continuous Graphical Models »
Dilin Wang · Zhe Zeng · Qiang Liu -
2018 Poster: A Semantic Loss Function for Deep Learning with Symbolic Knowledge »
Jingyi Xu · Zilu Zhang · Tal Friedman · Yitao Liang · Guy Van den Broeck -
2018 Oral: A Semantic Loss Function for Deep Learning with Symbolic Knowledge »
Jingyi Xu · Zilu Zhang · Tal Friedman · Yitao Liang · Guy Van den Broeck