Timezone: »
Neural networks have a remarkable capacity for contextual processing—using recent or nearby inputs to modify processing of current input. For example, in natural language, contextual processing is necessary to correctly interpret negation (e.g. phrases such as "not bad"). However, our ability to understand how networks process context is limited. Here, we propose general methods for reverse engineering recurrent neural networks (RNNs) to identify and elucidate contextual processing. We apply these methods to understand RNNs trained on sentiment classification. This analysis reveals inputs that induce contextual effects, quantifies the strength and timescale of these effects, and identifies sets of these inputs with similar properties. Additionally, we analyze contextual effects related to differential processing of the beginning and end of documents. Using the insights learned from the RNNs we improve baseline Bag-of-Words models with simple extensions that incorporate contextual modification, recovering greater than 90% of the RNN's performance increase over the baseline. This work yields a new understanding of how RNNs process contextual information, and provides tools that should provide similar insight more broadly.
Author Information
Niru Maheswaranathan (Google Brain)
David Sussillo (Google Brain, Google Inc.)
Broadly speaking, I am interested intersection of deep learning and computational neuroscience. More narrowly, this decomposes into an interest in dynamics, intelligible machine learning, recurrent neural networks, & generative models.
More from the Same Authors
-
2019 Poster: Understanding and correcting pathologies in the training of learned optimizers »
Luke Metz · Niru Maheswaranathan · Jeremy Nixon · Daniel Freeman · Jascha Sohl-Dickstein -
2019 Poster: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Oral: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Oral: Understanding and correcting pathologies in the training of learned optimizers »
Luke Metz · Niru Maheswaranathan · Jeremy Nixon · Daniel Freeman · Jascha Sohl-Dickstein -
2017 Poster: Input Switched Affine Networks: An RNN Architecture Designed for Interpretability »
Jakob Foerster · Justin Gilmer · Jan Chorowski · Jascha Sohl-Dickstein · David Sussillo -
2017 Talk: Input Switched Affine Networks: An RNN Architecture Designed for Interpretability »
Jakob Foerster · Justin Gilmer · Jan Chorowski · Jascha Sohl-Dickstein · David Sussillo