Timezone: »
Poster
A Pairwise Fair and Community-preserving Approach to k-Center Clustering
Brian Brubach · Darshan Chakrabarti · John P Dickerson · Samir Khuller · Aravind Srinivasan · Leonidas Tsepenekas
Thu Jul 16 06:00 AM -- 06:45 AM & Thu Jul 16 05:00 PM -- 05:45 PM (PDT) @
Clustering is a foundational problem in machine learning with numerous applications. As machine learning increases in ubiquity as a backend for automated systems, concerns about fairness arise. Much of the current literature on fairness deals with discrimination against protected classes in supervised learning (group fairness). We define a different notion of fair clustering wherein the probability that two points (or a community of points) become separated is bounded by an increasing function of their pairwise distance (or community diameter). We capture the situation where data points represent people who gain some benefit from being clustered together. Unfairness arises when certain points are deterministically separated, either arbitrarily or by someone who intends to harm them as in the case of gerrymandering election districts. In response, we formally define two new types of fairness in the clustering setting, pairwise fairness and community preservation. To explore the practicality of our fairness goals, we devise an approach for extending existing $k$-center algorithms to satisfy these fairness constraints. Analysis of this approach proves that reasonable approximations can be achieved while maintaining fairness. In experiments, we compare the effectiveness of our approach to classical $k$-center algorithms/heuristics and explore the tradeoff between optimal clustering and fairness.
Author Information
Brian Brubach (Wellesley College)
Darshan Chakrabarti (Carnegie Mellon University)
John P Dickerson (University of Maryland)
Samir Khuller (Northwestern University)
Aravind Srinivasan (Amazon)
Leonidas Tsepenekas (University of Maryland, College Park)
More from the Same Authors
-
2021 : PreferenceNet: Encoding Human Preferences in Auction Design »
Neehar Peri · Michael Curry · Samuel Dooley · John P Dickerson -
2022 : Centralized vs Individual Models for Decision Making in Interconnected Infrastructure »
Stephanie Allen · John P Dickerson · Steven Gabriel -
2022 : Planning to Fairly Allocate: Probabilistic Fairness in the Restless Bandit Setting »
Christine Herlihy · Aviva Prins · Aravind Srinivasan · John P Dickerson -
2023 Poster: Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost »
Marina Knittel · Max Springer · John P Dickerson · MohammadTaghi Hajiaghayi -
2022 Poster: Cliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments »
Ryan Sullivan · Jordan Terry · Benjamin Black · John P Dickerson -
2022 Poster: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Vedant Nanda · Till Speicher · Camila Kolling · John P Dickerson · Krishna Gummadi · Adrian Weller -
2022 Spotlight: Cliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments »
Ryan Sullivan · Jordan Terry · Benjamin Black · John P Dickerson -
2022 Oral: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Vedant Nanda · Till Speicher · Camila Kolling · John P Dickerson · Krishna Gummadi · Adrian Weller -
2022 Poster: Certified Neural Network Watermarks with Randomized Smoothing »
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein -
2022 Spotlight: Certified Neural Network Watermarks with Randomized Smoothing »
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein -
2022 Poster: Individual Preference Stability for Clustering »
Saba Ahmadi · Pranjal Awasthi · Samir Khuller · Matthäus Kleindessner · Jamie Morgenstern · Pattara Sukprasert · Ali Vakilian -
2022 Oral: Individual Preference Stability for Clustering »
Saba Ahmadi · Pranjal Awasthi · Samir Khuller · Matthäus Kleindessner · Jamie Morgenstern · Pattara Sukprasert · Ali Vakilian -
2021 Poster: Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks »
Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein -
2021 Spotlight: Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks »
Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein -
2020 Poster: Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics »
Debjani Saha · Candice Schumann · Duncan McElfresh · John P Dickerson · Michelle Mazurek · Michael Tschantz