Timezone: »

On the consistency of top-k surrogate losses
Forest Yang · Sanmi Koyejo

Wed Jul 15 09:00 AM -- 09:45 AM & Wed Jul 15 08:00 PM -- 08:45 PM (PDT) @ None #None
The top-$k$ error is often employed to evaluate performance for challenging classification tasks in computer vision as it is designed to compensate for ambiguity in ground truth labels. This practical success motivates our theoretical analysis of consistent top-$k$ classification. To this end, we provide a characterization of Bayes optimality by defining a top-$k$ preserving property, which is new and fixes a non-uniqueness gap in prior work. Then, we define top-$k$ calibration and show it is necessary and sufficient for consistency. Based on the top-$k$ calibration analysis, we propose a rich class of top-$k$ calibrated Bregman divergence surrogates. Our analysis continues by showing previously proposed hinge-like top-$k$ surrogate losses are not top-$k$ calibrated and thus inconsistent. On the other hand, we propose two new hinge-like losses, one which is similarly inconsistent, and one which is consistent. Our empirical results highlight theoretical claims, confirming our analysis of the consistency of these losses.

Author Information

Forest Yang (Google Brain)
Sanmi Koyejo (Illinois / Google)

Sanmi (Oluwasanmi) Koyejo an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Koyejo's research interests are in the development and analysis of probabilistic and statistical machine learning techniques motivated by, and applied to various modern big data problems. He is particularly interested in the analysis of large scale neuroimaging data. Koyejo completed his Ph.D in Electrical Engineering at the University of Texas at Austin advised by Joydeep Ghosh, and completed postdoctoral research at Stanford University with a focus on developing Machine learning techniques for neuroimaging data. His postdoctoral research was primarily with Russell A. Poldrack and Pradeep Ravikumar. Koyejo has been the recipient of several awards including the outstanding NCE/ECE student award, a best student paper award from the conference on uncertainty in artificial intelligence (UAI) and a trainee award from the Organization for Human Brain Mapping (OHBM).

More from the Same Authors