Timezone: »
Poster
Piecewise Linear Regression via a Difference of Convex Functions
Ali Siahkamari · Aditya Gangrade · Brian Kulis · Venkatesh Saligrama
Thu Jul 16 06:00 AM -- 06:45 AM & Thu Jul 16 05:00 PM -- 05:45 PM (PDT) @
We present a new piecewise linear regression methodology that utilises fitting a \emph{difference of convex} functions (DC functions) to the data. These are functions $f$ that may be represented as the difference $\phi_1 - \phi_2$ for a choice of \emph{convex} functions $\phi_1, \phi_2$. The method proceeds by estimating piecewise-liner convex functions, in a manner similar to max-affine regression, whose difference approximates the data. The choice of the function is regularised by a new seminorm over the class of DC functions that controls the $\ell_\infty$ Lipschitz constant of the estimate. The resulting methodology can be efficiently implemented via Quadratic programming \emph{even in high dimensions}, and is shown to have close to minimax statistical risk. We empirically validate the method, showing it to be practically implementable, and to outperform existing regression methods in accuracy on real-world datasets.
Author Information
Ali Siahkamari (Boston University)
Aditya Gangrade (Boston University)
Brian Kulis (Boston University)
Venkatesh Saligrama (Boston University)
More from the Same Authors
-
2022 : Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 : ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 : Acting Optimistically in Choosing Safe Actions »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2023 Poster: Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization »
Christopher Liao · Theodoros Tsiligkaridis · Brian Kulis -
2022 : ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 : Achieving High TinyML Accuracy through Selective Cloud Interactions »
Anil Kag · Igor Fedorov · Aditya Gangrade · Paul Whatmough · Venkatesh Saligrama -
2022 : FedHeN: Federated Learning in Heterogeneous Networks »
Durmus Alp Emre Acar · Venkatesh Saligrama -
2022 Workshop: Machine Learning for Audio Synthesis »
Rachel Manzelli · Brian Kulis · Sadie Allen · Sander Dieleman · Yu Zhang -
2022 : Opening remarks »
Brian Kulis -
2022 Poster: Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 Spotlight: Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 Poster: Faster Algorithms for Learning Convex Functions »
Ali Siahkamari · Durmus Alp Emre Acar · Christopher Liao · Kelly Geyer · Venkatesh Saligrama · Brian Kulis -
2022 Poster: ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 Spotlight: ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 Spotlight: Faster Algorithms for Learning Convex Functions »
Ali Siahkamari · Durmus Alp Emre Acar · Christopher Liao · Kelly Geyer · Venkatesh Saligrama · Brian Kulis -
2021 Poster: Debiasing Model Updates for Improving Personalized Federated Training »
Durmus Alp Emre Acar · Yue Zhao · Ruizhao Zhu · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama -
2021 Spotlight: Debiasing Model Updates for Improving Personalized Federated Training »
Durmus Alp Emre Acar · Yue Zhao · Ruizhao Zhu · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama -
2021 Poster: Memory Efficient Online Meta Learning »
Durmus Alp Emre Acar · Ruizhao Zhu · Venkatesh Saligrama -
2021 Spotlight: Memory Efficient Online Meta Learning »
Durmus Alp Emre Acar · Ruizhao Zhu · Venkatesh Saligrama -
2021 Poster: Training Recurrent Neural Networks via Forward Propagation Through Time »
Anil Kag · Venkatesh Saligrama -
2021 Spotlight: Training Recurrent Neural Networks via Forward Propagation Through Time »
Anil Kag · Venkatesh Saligrama -
2020 Poster: Minimax Rate for Learning From Pairwise Comparisons in the BTL Model »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2020 Poster: Deep Divergence Learning »
Kubra Cilingir · Rachel Manzelli · Brian Kulis -
2019 Workshop: Joint Workshop on On-Device Machine Learning & Compact Deep Neural Network Representations (ODML-CDNNR) »
Sujith Ravi · Zornitsa Kozareva · Lixin Fan · Max Welling · Yurong Chen · Werner Bailer · Brian Kulis · Haoji Hu · Jonathan Dekhtiar · Yingyan Lin · Diana Marculescu -
2019 Poster: Graph Resistance and Learning from Pairwise Comparisons »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2019 Oral: Graph Resistance and Learning from Pairwise Comparisons »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2019 Poster: Learning Classifiers for Target Domain with Limited or No Labels »
Pengkai Zhu · Hanxiao Wang · Venkatesh Saligrama -
2019 Oral: Learning Classifiers for Target Domain with Limited or No Labels »
Pengkai Zhu · Hanxiao Wang · Venkatesh Saligrama -
2018 Poster: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2018 Oral: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2017 Workshop: ML on a budget: IoT, Mobile and other tiny-ML applications »
Manik Varma · Venkatesh Saligrama · Prateek Jain -
2017 Poster: Adaptive Neural Networks for Efficient Inference »
Tolga Bolukbasi · Joseph Wang · Ofer Dekel · Venkatesh Saligrama -
2017 Talk: Adaptive Neural Networks for Efficient Inference »
Tolga Bolukbasi · Joseph Wang · Ofer Dekel · Venkatesh Saligrama -
2017 Poster: Connected Subgraph Detection with Mirror Descent on SDPs »
Cem Aksoylar · Orecchia Lorenzo · Venkatesh Saligrama -
2017 Talk: Connected Subgraph Detection with Mirror Descent on SDPs »
Cem Aksoylar · Orecchia Lorenzo · Venkatesh Saligrama