Timezone: »
Poster
Feature Selection using Stochastic Gates
Yutaro Yamada · Ofir Lindenbaum · Sahand Negahban · Yuval Kluger
Wed Jul 15 11:00 AM -- 11:45 AM & Wed Jul 15 11:00 PM -- 11:45 PM (PDT) @
Feature selection problems have been extensively studied in the setting of linear estimation (e.g. LASSO), but less emphasis has been placed on feature selection for non-linear functions.
In this study, we propose a method for feature selection in neural network estimation problems. The new procedure is based on probabilistic relaxation of the $\ell_0$ norm of features, or the count of the number of selected features. Our $\ell_0$-based regularization relies on a continuous relaxation of the Bernoulli distribution; such relaxation allows our model to learn the parameters of the approximate Bernoulli distributions via gradient descent. The proposed framework simultaneously learns either a nonlinear regression or classification function while selecting a small subset of features. We provide an information-theoretic justification for incorporating Bernoulli distribution into feature selection. Furthermore, we evaluate our method using synthetic and real-life data to demonstrate that our approach outperforms other commonly used methods in both predictive performance and feature selection.
Author Information
Yutaro Yamada (Yale University)
Ofir Lindenbaum (Yale)
Sahand Negahban (YALE)
Yuval Kluger (Yale School of Medicine)
More from the Same Authors
-
2023 Poster: Towards understanding and reducing graph structural noise for GNNs »
Mingze Dong · Yuval Kluger -
2023 Poster: Few-Sample Feature Selection via Feature Manifold Learning »
David Cohen · Tal Shnitzer · Yuval Kluger · Ronen Talmon -
2022 Poster: Neural Inverse Transform Sampler »
Henry Li · Yuval Kluger -
2022 Poster: Locally Sparse Neural Networks for Tabular Biomedical Data »
Junchen Yang · Ofir Lindenbaum · Yuval Kluger -
2022 Spotlight: Neural Inverse Transform Sampler »
Henry Li · Yuval Kluger -
2022 Spotlight: Locally Sparse Neural Networks for Tabular Biomedical Data »
Junchen Yang · Ofir Lindenbaum · Yuval Kluger -
2019 Poster: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Oral: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2018 Poster: Learning Binary Latent Variable Models: A Tensor Eigenpair Approach »
Ariel Jaffe · Roi Weiss · Boaz Nadler · Shai Carmi · Yuval Kluger -
2018 Oral: Learning Binary Latent Variable Models: A Tensor Eigenpair Approach »
Ariel Jaffe · Roi Weiss · Boaz Nadler · Shai Carmi · Yuval Kluger -
2017 Poster: On Approximation Guarantees for Greedy Low Rank Optimization »
RAJIV KHANNA · Ethan R. Elenberg · Alexandros Dimakis · Joydeep Ghosh · Sahand Negahban -
2017 Talk: On Approximation Guarantees for Greedy Low Rank Optimization »
RAJIV KHANNA · Ethan R. Elenberg · Alexandros Dimakis · Joydeep Ghosh · Sahand Negahban