Timezone: »
We consider learning a multi-class classification model in the federated setting, where each user has access to the positive data associated with only a single class. As a result, during each federated learning round, the users need to locally update the classifier without having access to the features and the model parameters for the negative classes. Thus, naively employing conventional decentralized learning such as distributed SGD or Federated Averaging may lead to trivial or extremely poor classifiers. In particular, for embedding based classifiers, all the class embeddings might collapse to a single point. To address this problem, we propose a generic framework for training with only positive labels, namely Federated Averaging with Spreadout (FedAwS), where the server imposes a geometric regularizer after each round to encourage classes to be spreadout in the embedding space. We show, both theoretically and empirically, that FedAwS can almost match the performance of conventional learning where users have access to negative labels. We further extend the proposed method to settings with large output spaces.
Author Information
Felix Xinnan Yu (Google)
Ankit Singh Rawat (Google)
Aditya Menon (Google Research)
Sanjiv Kumar (Google Research, NY)
More from the Same Authors
-
2022 Poster: In defense of dual-encoders for neural ranking »
Aditya Menon · Sadeep Jayasumana · Ankit Singh Rawat · Seungyeon Kim · Sashank Jakkam Reddi · Sanjiv Kumar -
2022 Spotlight: In defense of dual-encoders for neural ranking »
Aditya Menon · Sadeep Jayasumana · Ankit Singh Rawat · Seungyeon Kim · Sashank Jakkam Reddi · Sanjiv Kumar -
2022 Poster: Robust Training of Neural Networks Using Scale Invariant Architectures »
Zhiyuan Li · Srinadh Bhojanapalli · Manzil Zaheer · Sashank Jakkam Reddi · Sanjiv Kumar -
2022 Oral: Robust Training of Neural Networks Using Scale Invariant Architectures »
Zhiyuan Li · Srinadh Bhojanapalli · Manzil Zaheer · Sashank Jakkam Reddi · Sanjiv Kumar -
2022 Poster: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2022 Spotlight: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2021 Poster: A statistical perspective on distillation »
Aditya Menon · Ankit Singh Rawat · Sashank Jakkam Reddi · Seungyeon Kim · Sanjiv Kumar -
2021 Poster: Disentangling Sampling and Labeling Bias for Learning in Large-output Spaces »
Ankit Singh Rawat · Aditya Menon · Wittawat Jitkrittum · Sadeep Jayasumana · Felix Xinnan Yu · Sashank Jakkam Reddi · Sanjiv Kumar -
2021 Spotlight: A statistical perspective on distillation »
Aditya Menon · Ankit Singh Rawat · Sashank Jakkam Reddi · Seungyeon Kim · Sanjiv Kumar -
2021 Spotlight: Disentangling Sampling and Labeling Bias for Learning in Large-output Spaces »
Ankit Singh Rawat · Aditya Menon · Wittawat Jitkrittum · Sadeep Jayasumana · Felix Xinnan Yu · Sashank Jakkam Reddi · Sanjiv Kumar -
2020 Poster: Does label smoothing mitigate label noise? »
Michal Lukasik · Srinadh Bhojanapalli · Aditya Menon · Sanjiv Kumar -
2020 Poster: Low-Rank Bottleneck in Multi-head Attention Models »
Srinadh Bhojanapalli · Chulhee Yun · Ankit Singh Rawat · Sashank Jakkam Reddi · Sanjiv Kumar -
2020 Poster: Accelerating Large-Scale Inference with Anisotropic Vector Quantization »
Ruiqi Guo · Philip Sun · Erik Lindgren · Quan Geng · David Simcha · Felix Chern · Sanjiv Kumar -
2020 Poster: Supervised learning: no loss no cry »
Richard Nock · Aditya Menon -
2019 : Structured matrices for efficient deep learning »
Sanjiv Kumar -
2019 Poster: Fairness risk measures »
Robert C Williamson · Aditya Menon -
2019 Poster: Escaping Saddle Points with Adaptive Gradient Methods »
Matthew Staib · Sashank Jakkam Reddi · Satyen Kale · Sanjiv Kumar · Suvrit Sra -
2019 Oral: Escaping Saddle Points with Adaptive Gradient Methods »
Matthew Staib · Sashank Jakkam Reddi · Satyen Kale · Sanjiv Kumar · Suvrit Sra -
2019 Oral: Fairness risk measures »
Robert C Williamson · Aditya Menon -
2019 Poster: Monge blunts Bayes: Hardness Results for Adversarial Training »
Zac Cranko · Aditya Menon · Richard Nock · Cheng Soon Ong · Zhan Shi · Christian Walder -
2019 Poster: Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi · Felix Xinnan Yu · Daniel Holtmann-Rice · Dmitry Storcheus · Afshin Rostamizadeh · Sanjiv Kumar -
2019 Oral: Monge blunts Bayes: Hardness Results for Adversarial Training »
Zac Cranko · Aditya Menon · Richard Nock · Cheng Soon Ong · Zhan Shi · Christian Walder -
2019 Oral: Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi · Felix Xinnan Yu · Daniel Holtmann-Rice · Dmitry Storcheus · Afshin Rostamizadeh · Sanjiv Kumar -
2018 Poster: Loss Decomposition for Fast Learning in Large Output Spaces »
En-Hsu Yen · Satyen Kale · Felix Xinnan Yu · Daniel Holtmann-Rice · Sanjiv Kumar · Pradeep Ravikumar -
2018 Oral: Loss Decomposition for Fast Learning in Large Output Spaces »
En-Hsu Yen · Satyen Kale · Felix Xinnan Yu · Daniel Holtmann-Rice · Sanjiv Kumar · Pradeep Ravikumar -
2017 Poster: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Talk: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Poster: Distributed Mean Estimation with Limited Communication »
Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2017 Talk: Distributed Mean Estimation with Limited Communication »
Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan