Timezone: »

 
Poster
From Local SGD to Local Fixed-Point Methods for Federated Learning
Grigory Malinovsky · Dmitry Kovalev · Elnur Gasanov · Laurent CONDAT · Peter Richtarik

Wed Jul 15 11:00 AM -- 11:45 AM & Thu Jul 16 12:00 AM -- 12:45 AM (PDT) @ Virtual

Most algorithms for solving optimization problems or finding saddle points of convex-concave functions are fixed-point algorithms. In this work we consider the generic problem of finding a fixed point of an average of operators, or an approximation thereof, in a distributed setting. Our work is motivated by the needs of federated learning. In this context, each local operator models the computations done locally on a mobile device. We investigate two strategies to achieve such a consensus: one based on a fixed number of local steps, and the other based on randomized computations. In both cases, the goal is to limit communication of the locally-computed variables, which is often the bottleneck in distributed frameworks. We perform convergence analysis of both methods and conduct a number of experiments highlighting the benefits of our approach.

Author Information

Grigory Malinovsky (Moscow Institute of Physics and Technology)
Dmitry Kovalev (KAUST)
Elnur Gasanov (KAUST)
Laurent CONDAT (KAUST)
Peter Richtarik (KAUST)

Peter Richtarik is an Associate Professor of Computer Science and Mathematics at KAUST and an Associate Professor of Mathematics at the University of Edinburgh. He is an EPSRC Fellow in Mathematical Sciences, Fellow of the Alan Turing Institute, and is affiliated with the Visual Computing Center and the Extreme Computing Research Center at KAUST. Dr. Richtarik received his PhD from Cornell University in 2007, and then worked as a Postdoctoral Fellow in Louvain, Belgium, before joining Edinburgh in 2009, and KAUST in 2017. Dr. Richtarik's research interests lie at the intersection of mathematics, computer science, machine learning, optimization, numerical linear algebra, high performance computing and applied probability. Through his recent work on randomized decomposition algorithms (such as randomized coordinate descent methods, stochastic gradient descent methods and their numerous extensions, improvements and variants), he has contributed to the foundations of the emerging field of big data optimization, randomized numerical linear algebra, and stochastic methods for empirical risk minimization. Several of his papers attracted international awards, including the SIAM SIGEST Best Paper Award, the IMA Leslie Fox Prize (2nd prize, twice), and the INFORMS Computing Society Best Student Paper Award (sole runner up). He is the founder and organizer of the Optimization and Big Data workshop series.​

More from the Same Authors